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Preface

These lecture notes are intended for the 2022 course Perturbation Theory at the University of
Groningen. You will notice that, although the course is called Perturbation Theory, we cover also a
few perturbation methods. The purpose of that is to provide an overview of what one would usually
refer to “a perturbation analysis” in science. My goal with the course, and with the lecture notes,
is that you will have a thorough introduction to some classical topics of perturbation methods and
of perturbation theory. Hopefully, that will provide you with enough basis to explore further related
topics.

These lecture notes are mostly based on the references in the bibliography, but more so on [13]
and [5]. Having said that, and although I have tried to make these notes as pedagogical as possible,
this is not a textbook. Thus, I definitely encourage you to consult the references as well.

Please communicate any comments, suggestions, corrections, etc. to h.jardon.kojakhmetov@rug.nl.
I want to thank all those interested in the course, and especially those who have pointed-out several

typos and mistakes.


mailto:h.jardon.kojakhmetov@rug.nl




CHAPTER 1

Introduction and Motivation

In this course we are interested in understanding, for example, problems defined by the following
differential equation
dx
1 — = f(x,¢),
1) 2 fa.e)
where € R"™ denotes the state of a system, € is a small parameter', and f : R x R — R" is a

sufficiently smooth vector field. The main idea of perturbation theory can be described as follows:

Assume that the dynamics of the unperturbed system

@) < — f(,0),

are well-understood. What can we say about the behavior of (1) for e sufficiently small, as
t— o0?

Here, by “well-understood” we mean that, for example, the solutions of (2) are explicitly known,

or that one has sufficiently good knowledge about the behavior of its solutions.

To start fixing ideas, let us see our first example.

ExAMPLE I.1. Consider the ODE

d
(3) e ar eh(z),
dt ~— 2
fze)
with x € R, and a > 0. If we set ¢ = 0, then we obtain the unperturbed equation
(4) e,

=
which has the analytic solution
(5) x(t) = xz(tp) exp(—a(t — tg)).

This solution has an exponentially decaying behavior as shown in figure 1.

IThat is 0 < || < 1
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x(t) = x(tg)e™

t

FIGURE 1. Solution of the unperturbed system (4).

We now would like to know, which functions h lead to a qualitatively similar behavior as in
Figure 1 for ¢ sufficiently small.

In this course, among other topics, we will learn about some of the methods that can be used
to answer the aforementioned question. For now, let us “naively” assume that we can write the
solution of the perturbed system (3) as:

(6) 2o (t) = xo(t) + exy (t) + 22 (t) + - - -,

where z¢(t) is given by (5), and the functions x;(t), for ¢ > 0, are to be found. Regarding the
initial condition, let us for simplicity assume that z.(tg) = zo(to) =: x5 and z;(to) =: z; = 0 for
all 4 > 0. Substituting (6) into (3) we get:

dx.
dt

Before going further with the substitution, it is worth noting that we can expand h(z.) for z.

= —ax. +eh(z;).

near xg as®

h(xe)

Q

h(zo) + 1 (z0)(ze — 20) + B (20) (22 — 950)2 4+
h(xo) + W (z0)(exy + e2xa + -+ ) + 20 (wo) (exy + g +--- )2 + -+
h(zo) + eh (z0)x1 + 2h(x0)x2 + O(3),

where O(¢%) denotes terms that are multiplied by ¥ with & > 3 (we will see the formal definition
of the big-O symbol later). Thus, continuing with the substitution in (3):

d
(;Utg = —ax. +eh(z;)
d(zo + exq + 229 + - -
o 1 at : ) —a(zo + ez + €%+ -+ ) + eh(xo) + 2R (wo)z1 + O(£?).
d
Since z( is a solution of the unperturbed system, that is &ro _ —axg, we can further reduce,

dt

and identify terms that multiply the same power of ¢ as:

d d
8% + 62% + 0 (%) = (= az1 + h(xo)) + £ ( — amy + W' (zo)z1) + O ().
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That is, for each power of € we have the differential equations:

dzo _ —ax

a

d

% = —az1 + h(z)

d

% = —axy + N (z0)z1

If we refer to the above equations as the Oth-degree equations, 1st-degree equation, and so forth,
we notice that the i-th equation is a scalar non-autonomous ODE, where the time-dependent
terms depend only on the solutions of kth-degree equations with k& < i. Thus, if one can solve
each of these equations, then one obtains the perturbed problem’s solution (6).

To conclude this example, let us mention that a central problem when dealing with the ap-
proximations as in this example is to know whether the solution written as in (6) converges to
the true analytic solution. Another important observation is that a solution as proposed in (6)
is not always valid, and the choice of “anzats” usually depends on the problem at hand. The
method we have employed in this example is called Method of Series Expansion, and is one
of the most widely used methods.

%et us omit the argument ¢

EXERCISE 1.1. Consider the perturbed problem of Example 1.1 with h(z) = .

The corre-
sponding solution can be found analytically, find it. Next, assume a series solution of the form
Te = xo + €x1, that is up to first degree in €, and compute x1. Using a computer, plot and
compare the analytic solution with xq (the solution of the unperturbed system) and the solution

xe = xo + €1 choosing different values of |e| < 1.

ExaMPLE [.2. One important question regarding perturbations is whether, for example, an
equilibrium persists under sufficiently small perturbations. So, let us consider the system

dz

— = f(z,e),

= = f(z.e)
where © € R", ¢ is a small parameter, and f is C"-smooth, » > 1. Assume that z* € R" is

d
an equilibrium point of the unperturbed problem d—j = f(z,0), that is f(z*,0) = 0. It follows

from the implicit function theorem that if ——(x*,0) is non-singular (has full rank), then there
x
exists a unique local function xz. = z(e) such that f(x.,e) = 0. In this case we say that the

equilibrium point persists.

EXERCISE 1.2. For the following scalar systems, locate the equilibria of the perturbed and un-

perturbed problems. What is the difference between them?

dx 4 ea?
o — =u+tex
dt
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° —x—a:2+6$
dt

ExAMPLE 1.3 (A projectile problem). Consider the differential equation
d? 1

(7) dTg =—aigp  t>o
This equation represents, after some re-scaling (see [13, section 1.1]) the height of an object
projected radially upward the surface of the Earth. In particular, the small parameter £ > 0
provides a relative measurement of the height of the projectile compared with the radius of the
Earth. Let us then assume that y(0) = 0 (the projectile is initially located at the surface of the
Earth), and %(0) =1 (some initial velocity).
Let us start with the unperturbed problem ¢ = 0. In such a case (7) reduces to

d%y

de?
which is essentially telling us that the projectile is subject to a constant downward force. The

=1,
d
particular solution with the initial conditions yo(0) = 0 and %(O) =1is:
t
yo(t) = 5 (2 —1).

Recall that with the subscript 0 we denote the solution of the unperturbed problem.
Next, since € > 0 let us suppose that we can write the solution of the perturbed problem (7) as

(8) ye(t) = yo(t) + eyr(t) + ya(t) + -+ .

At this moment, let us look at the initial conditions and recall that:

y=(0) = 90(0) + ey1(0) +--- =0

and
dy. dyo dy1
= 0) = 2 Aoy =1.
at 0= g O +eg ©
dy;
Thus, we shall assume that y;(0) = d—i(O) =0 for all 7 > 0.
Substituting (8) in (7) we get®
d®(yo(t) + ey (t) + () +---) _ 1
de? (1+&(yo(t) + ey (t) + 2ya(t) +---))?
Pyo(t)  d*uilt dya(t
g;( ) 4 e gtlz,( ) | 2 yjt( O + 2e(yo(t) +eya(t) + -+ +) — 3% (yo(t) + epn(t) + -+ ).

So, matching terms with the same degree of € we get the equations:
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yo(t) dyo

de2 -1 Y0(0) =0, E(O) =1
d2y1(t) dyy

a2 2yo(1), y1(0) = E(O) =0
d2ys(t d

é/;( ) _ 2u1(t) — 3yo(t),  2(0) = %(0) _0

where the first equation has already been solved above. The equation for y;(¢) then reads as:

Py (t)
=t2—t
dt2 ( )?
which has the particular solution
t3
t)=—(4—1).
i) = 54— 1)
Consequently, the equation for yo(t) reads as:
dye(t) 83 3t
=—M4-t)— =2t
which has the particular solution
t° 2 3
t) = ——— (180 — 45t — 12t* + 2¢°).
a(t) = — +26)

Further solutions y;(t), for ¢ > 2, can be computed in a similar way.

With the previous computations we have that the solution of the perturbed problem (7) is given

by:
2 — —(4—t)— ——(180 — 45t — 126> +2t3) + - - -
9) Ye(t) = (2= 1) + 5 (4= 1) = 55 (180 — 452 — 1267 4 2¢%) 4

Notice that, at least from the few solutions we have computed, the solutions y; seem to have

ot et e

the trend y; — 0 as i — oo. This hints to the possibility of the series (9) to be convergent. See

in Figure a comparison of the solutions in this example.

0.6p 0.6p

0.5 0.5

0.4}F 0.4}

= 0.3F = 0.3}

0.2F 0.2}

0.1F 0.1
00 0:5 1 1:5 2 2:5 00 0:5 1 1:5 2:5
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FIGURE 2. Comparison of the approximations in this example. The black, red,
blue, and magenta curves correspond to the numerical, yq, yo + €y1, and yg +
ey1 + €2y solutions. On the left we used € = 0.2 while in the right ¢ = 0.05.

9See also exercise 1.3

EXERCISE 1.3. In the example 1.3 we used the approximation:
1
(14 x)?

for x small. Show that the full expansion is, in fact,

~1—22+30% 4,

1 o0
v 1+ kzl(_l)k(k + 1)z

Is the series convergent for |x| < 17 Answer: yes, but only for |z| < 1.

(14 x)?

this series is simply the Taylor series for x near 0, and thus the a;’s are the Taylor coefficients).

Hint: Since |x| < 1 one can propose the ansatz ~ 14 ayx + agx® + --- (notice that

Compute a few of the coefficients a;. Once you observe a pattern, try to find a closed formula
for each of the a; coefficients. To check for convergence, you may want to use on of the many

convergence tests, such as the “Ratio test”.

REMARK I.1. This exercise shows that series expansions can also be used in other contexts
beyond ODEs.

ExXAMPLE [.4 (Forced oscillator). Consider a harmonic oscillator subject to a small periodic

force, that is

e .
(10) TS + wjf = esin(wt),
where 6 € [0,27) is the angle of the oscillator, wy its natural frequency, w is the frequency of
the force, and || < 1.

The solution of the homogeneous part

is
Or(t) = a cos(wot) + bsin(wpt),

where a and b are constants that depend on the initial conditions. To find a particular solution

for the inhomogeneous part, let us propose the particular solution
(11) 0, (t) = csin(wt),

where ¢ is a constant to be found. Substituting (11) into (10) we find that

9
C = —FJ//——m—
2 _ 20
wo w
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and therefore, the general solution of (10) is given by

(12) 0(t) = acos(wot) + bsin(wot) + —5—— sin(wt),
WO — W
. 1 /dé cw

Notice that the solution (12) is defined only whenever w # wy. However, the limit of 0(t) as
w — wy is well-defined. Indeed:

lim 6(t) = lim {a cos(wot) + bsin(wot) + ———— sin(wt)]

w—rwo W00 o7
= wleWO [9(0) cos(wot) + Ljo <if(0) _ wgﬁ’g}z) sin(wot) + W sin(wt)]
) = 0(0) cos(wot) + Ljojz(O) sin(wot) + %IEBO zlgn(_wf})z B ;:(iljfgl(fi)z)}
13
= 6(0) cos(wot) + Ljoiz(()) sin(wot) + 5w1LI£1,0 :wo sinisgﬁig—_wj;l(wm)]
= 6(0) cos(wpt) + :0(313(0) sin(wot) + Swli_)rgo :wot COS(C_U;)W;;in(WOt)]
= 6(0) cos(wot) + Ljo((ﬁ(()) sin(wot) — gtco;g:gt) + sSiI;(:z)ot)

Notice that the solution for w # wy, given by (12), is bounded. Moreover, if wﬁ € Q, then
the solution #(t) is periodic, and quasiperiodic otherwise. In contrast, the solutiog for w = wy
grows proportionally to et. So, if we let § = w — wy be another parameter, we notice that: a)
the solution for € = 0 and for € # 0 but small can be largely different. The same is true for the
case 6 = 0 and § small. See figure 3.

wy =1, w=0.5 wy =1, w=0.9
1.5¢ 3r

10 20 30 40 50

FIGURE 3. Comparison of the analytic solution (12) and its approximation under
several assumptions. In both graphs € = 0.1, the solution (12) is shown in blue,
and the solution for ¢ = 0 in red. On the right we also plot the limit solution
(13). Notice that its amplitude grows linearly, this effect is called resonance.
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EXERCISE 1.4. Implement, on a computer program, the distinct solutions of the forced oscillator

of Example 1.4 and test several setups for € and & comparing your observations.

ExAMPLE 1.5 (Example 1.4 continued - action angle variables). We continue with Example 1.4,
but we now consider an arbitrary oscillator (and not necessarily a harmonic oscillator). For
convenience, let us recall that the equation we study is

a6 ,
We shall assume that, for € = 0, the origin # = 0 is a stable equilibrium point.
d
LEMMA I.1. Consider (14) with e = 0. If f(0) = 0 and d—g(()) < 0, then 6 = 0 is a stable
equilibrium point.
PROOF. When ¢ = 0, (14) simply reads as
a0
— = f(0
. . . do
which can be re-written as a system (with (z1,z2) = (0, E))
dxl "
=1
2 fla)
dt v

The equilibrium for (15) is, indeed, given by zo = 0 and f(z1) = f(f#) = 0. Linearization of
(15) at the origin gives

dzy o 1]y,
It | _ 1
day | 7 48 gy Lz]
dt dxl

d d
Notice that if d—f(O) > 0, then the origin is a saddle, while when d—f(O) < 0, the origin
xr1 T

is a center. In the latter case, the origin is indeed stable (but, of course, not asymptotically
stable). ]

The most important observation in this example is that (14) has a constant of motion for ¢ = 0.

dv (6
LEMMA 1.2. Consider (14) with ¢ = 0 and let V() be a (potential) function such that Zé ) =

1 (do\>
—f(0). Then the function H = 5 <dt> + V(0) is constant along solutions of (14) with € = 0.
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PRrooOF. Indeed

dH  d (1 /do\?

dt_dt<2 <dt> *V”))
_ Ao avdg
Codt de2 T de de

o (& v
Code \de2 T de
do [ d?e
_dt<dt2_f(9>>
=0.

U
1
Notice that from the assumption %(0) < 0 and d‘gg@) = —f(0), we can say that V(6) ~ 5@)392

1
(where wg and the 3 factor are chosen just for convenience). The previous observation, together

0 1 /do
with the fact that H = H(0 d—) = 3 <dt

2
oy ) + V(0) is constant along the solutions of the

dé

unperturbed problem, imply that the orbits in the phase-space <9, o

) are closed near the
do

origin (0, 5) = (0,0).

Since (at least locally) the orbits are closed, and the function H is constant along such orbits, we

L : : . de o
can imagine that we can parameterize the solutions, not only by their [ 6, T -parametrization,

dH
but also by (H, 1), where ¢ € [0,27). In that way, for each constant value of H, Frie 0 and
the corresponding closed orbit is parametrized by the angle ). Moreover, one can even find a

parametrization where the angular velocity along each closed curve is constant. In summary,

dé
one can find a parametrization <9, dt) — (I, ¢), where (14) (for e = 0) is given by

=0
(16) ¥

where the function g is specified once f(6) is fixed. The coordinates (I, ¢) are called action-angle

coordinates®. In these coordinates I = 0 correspond to § = % = 0 and ¢(0) = —wp. Notice
indeed that the orbits of (16) are circles, and for I near 0, the angular speed along each circle
is close to wy, as it occurs for the harmonic oscillator.
Since the action-angle coordinates remind us of polar coordinates, it will be convenient to work
with the complex variable z = I exp(:¢). From (16), and using the chain rule, we find that z
satisfies the differential equation

dz

)]
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where one should recall that, for e = 0, |z| is constant along solutions near the origin. Therefore,

the corresponding solution is

(17) z(t) = 2(0) exp(zg(|z])2).
In this way, we can re-write (14) as
d
(18) - 129(|z]) + esin(wt) F(z, z),

dt
where the function F(z, z) is introduced to account for the fact that we have not specified the
nonlinear function f(#). Naturally, a particular choice of f(6) leads to a particular function
F(z,2).

A particularly convenient way to qualitatively understand the dynamics of (18) is to use a

27
Poincaré map. Since the right-hand side of (18) is — periodic, it suffices to look at the iteration
w

2
of the Poincaré map P : z(0) — z (W) If e = 0, we know from (17) that

] 2rul:h),

Py(z) = zexp < .

In particular, we notice that

Py(0) =0

P, 2 -2
Q(O) = exp <7rzg(|0\)> = exp <7mw0> .
dz w w

This means, from the implicit function theorem, that for ¢ # 0 sufficiently small, and provided
w

that — ¢ 7, the Poincaré map P- has a fixed point near 0. Let 2* = 2* (€) denote such a fixed
w

point and let Z = z — z*. It follows from our previous arguments that, for e # 0 small and

W,
= ¢ 7, the Poincaré map is of the form

2w

P.(Z) = Zexp (— ) +R(Z,7,¢),

where the function R represents higher order terms. From the form of P.(Z) we conclude that
near the origin, and ¢ small, the Poincaré map P: looks like a translation along circles. See
some examples in figure 4.
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e =0 e =0.001
0.1} 01/
/,
/f
0.05} 0.05¢ [/
i
il
0f o i
1
W\
-0.05+ -0.05- )
-0.1 -0.1 \\v/ :
-0.151— : : : -0.151— ‘ : :
0.2 0 0.2 0.4 0.2 0 0.2 0.4
e =0.002
0.1} N 0.1}
/
0.05: [/ 0.05}
I
o || 0
il
-0.05 1 %‘uﬂ -0.05¢
W\
0.1+ 0.1}
-0.15 : : -0.15
0 0.2 0.4

FIGURE 4. A few plots of the Poincaré section of (18) for f(0) = —wif +6* — 63,
wp = 0.55, w = 1. Each colored orbit corresponds to a single initial condition,
and we show about 1000 iterations of the Poincaré map after some time has

passed allowing each trajectory to approach an attractor. Notice that for ¢ =0
all orbits shown are periodic. When € > 0, some of such orbits persist, while
others get destroyed. Indeed one can observe that for ¢ = 0.01 a few islands

appear surrounded by what appear to be chaotic clouds.

%A more formal and general description of action-angle coordinates can be found in the course “Hamiltonian

mechanics”.

EXERCISE 1.5. Implement on a computer program an algorithm to visualize the Poincaré map
of the previous example. Test with different choices of wg, w, and . In particular, compare the

time series of orbits corresponding to single close rings, pockets, and clouds.
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I.1. Further exercises for this chapter

(1) Let f(x) and g(z) be smooth functions. Let h(x) = 1_{(:)() Write an approximation of
g(x

the form h(x) ~ f(z) + chi(z) + e?ha(z) + - -- and explicitly obtain hy and hs.

(2) Using Taylor’s formula find the first three terms of the approximation of f(g) = sin(exp(¢))
for € near 0. Graph f(e) and its approximation, and compare them.

_exp(e)
=T-c

(3) Using Taylor’s formula find the first three terms of the approximation of f( for €

near 0. Graph f(e) and its approximation, and compare them.
(4) Using Taylor’s formula approximate the integral / exp(x¥)dz, for any k € N, k > 1.

d
(5) Consider the scalar equation Lo et esin(t) with initial condition z(0) = 1. Propose an

approximation of the form x.(t) = xo(t)+ex1(t) where xo(t) is the solution of the unperturbed

d
problem d—f = —z. Find the term z1(t).
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Some basic notions and definitions

I11.1. Order symbols

In this section we define the Landau symbols. These will help us formalize and compare the

behavior of functions of the perturbation parameter € as € — 0.

DEerINITION IL.1 (Big-Oh). Let f(e) and g(e) be (real valued) functions and 0 < gy < 1 be a
small constant. We say that “f is big Oh of g as e — &¢”, and write f = O(g) as € — £, if there are

positive constants k and e; such that

If(e)| < klg(e)l, for g <e<ey

The previous definition means that if f(g) = O(g(g)), then the absolute value of f(e) is bounded,
up to a constant, by the absolute value of g(¢). Equivalently we can say that if

Lo )
2 Jg()

< 00,
then f = O(g) as € — «o.

DEFINITION I1.2 (Small-Oh). Let f(e) and g(e) be (real valued) functions and 0 < ¢g < 1 be a
small constant. We say that “f is small Oh of g as € — £¢”, and write f = o(g) as € — &y, if for every

constant & > 0, there is a constant €9 such that

|f(e)] < dlg(e)], for eg < & < &9

The previous definition means that if f(e) = o(g(g)), then g(¢) dominates f(e) as € — €. Equiv-
alently we can say that if

L G
% Jg(e)

=0,

then f = o0(g) as € — &p.

ExAMPLE II.1. All the orders here are as £ — 0.
(1) Consider f(¢) =2 and g1(e) = ¢, ga(e) = —ae? + &>, a > 0. Then

o _
ili%gi_ili%g_o = [ =o(g)

2

3
lim — =lm ———— = — = =0
e=0 gy &0 | —ag? + €3| a / (g)

(2) Consider f(e) = esin(l + ¢~ ') and g(¢) = ¢. In this case we cannot use the limit

criterion. But it is clear that /] <1 for 0 < e. Hence f = O(g).

]

13
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(3) Consider f(¢) =sin(e) and g(¢) = e. Then

0 52k+l

>V g

— (2k+1)!
lim = = lim ~— =1 = f=0(g).
e—=0 g e—0 3

1
EXERCISE II.1. Let f = exp <—> Prove that for all k € N, f = o(e¥). In this case we say
5

that f is “transcendentally small with respect to powers of €”.

EXERCISE 11.2. Prove the following statements :

(1) f=0Q) ase = ey <= f is bounded as ¢ — &g.

(2) f=0(1) ase ey < f—0ase— .

(3) f=o0(g9) ase -9 = f=0(g) as e — g. Is the converse true?
(4) [=0EY) ase -0 = f=o0(") ase — 0 for any B < a.

(5) o(O(h)) = O(o(h)) = o(h) as e — 0. (Here h = h(c))

EXERCISE 11.3. Let fi = O(g1) and fo = O(g2) as € — 0. Show that
(1) fr + fo = O(max{g1, g2})

(2) fifo = O(g192)

I1.2. Asymptotic approximations
In this section we formalize what we mean by an asymptotic approximation.

DEFINITION I1.3. Given f(e) and g(e), we say that g(e) is an asymptotic approzimation of f(e)
as € — €9 whenever f = g+ o(g) as € = g9 and we write f ~ g as € — €.

s N

The above definition means that g is an asymptotic approximation of f if the error f — g is of
higher order than the approximation itself. Let us now see a few examples.

1
ExXAMPLE IL.2. Let f(g) = sin(e) and € = 0. We know that f(g) = — =& + O(e”). Then:

6
(1) f(s)—5:—%53+(9(65):0(6) s fee
(2) f(e) - (s—é?) 21;()55—1—0(57):0(5—(1383) == fws—ée?’

EXERCISE I1.4. Related to the previous example where f(e) = sin(e). Is it true that f ~ e +2e*?
Answer: yes.
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ExaMPLE I1.3. Let f(x,e) = x + exp (_{) with € (0,1) and small e. First, we wonder if
€
f~zase— 0. Indeed

f—xzexp(—g), and limwzo,

e—0 X
for any fixed value of z € (0,1). So indeed f ~ z. Notice, however, that f(0) = 1, which means
that the approximation is worse the closer x is to 0, no matter the value of . In other words, if
we want the approximation to be “good” the closer x is to 0, the smaller £ must be, see figure
1.
f()

FIGURE 1. Comparison between the approximation f(z) ~ z (in black) and
f(x) for e = 0.1 (blue) and € = 0.025 (red).

1

EXERCISE IL5. Consider the function f(z) = sin(rz) 4+ €® for 0 < z < 7 Is it true that

f ~sin(rz) as e — 02 Justify your answer sufficiently.

I1.3. Asymptotic expansions

In the previous section we have noted a few facts: a) asymptotic approximations are not unique,
and b) we do not get that much information about the accuracy of the approximation. In this section

we address precisely such issues.

DEFINITION I1.4.

Las e — g¢ if and only if Gjt1 =

(1) The functions ¢1(g), ¢2(¢), ... form an asymptotic sequence
o(¢j) as e g forall j=1,2,....
(2) If ¢1(e), ¢=2(e), ... is an asymptotic sequence, then f(¢) has an asymptotic expansion up to

order ¢,, (w.r.t. the given sequence) if and only if

f=Y"ajé;+o(¢n),

J=1

as € — €9 and where the coefficients a; are independent of ¢.

REMARK II.1.

e The functions forming the asymptotic sequence in the previous definition are usually called

gauge functions, basis functions, or scale, depending on the framework.

Wwe may also say that the functions are well-ordered
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e [t is also common to write an asymptotic expansion as
n
f=Y"aj¢;+ O(¢ni1),
j=1
to highlight the concept “the next term in the expansion is smaller than the previous one”.

e If f has an asymptotic expansion for all n € N one usually writes

fe)ase
j=1

ExaAMPLE I1.4. Examples of gauge functions are:
(1) gbl :57"1’ ¢2=6r2, ¢3:€T3, ey With rp <ro <rg < -vv

(2) d)l = 17 ¢2 = exp <_1>7 ¢3 = exp <_2>a
g g
(3) ¢p =e|lne| ™, keN

EXERCISE 11.6. Verify that the functions given in the previous example indeed form an asymp-

totic sequence. You may need to re-arrange some.

Now a question that arises is how to find an asymptotic expansion for a given function f(g)?

fairly common first approach is to use Taylor’s expansion.

ExampLE II.5.

(1) Let f(e) = exp(e). Then, the Taylor expansion for ¢ near 0 is

2

€
exp(e):1+5+§+---.

Therefore exp(e) ~ 14 ¢ + O(£?).

cose
(2) Let f(e) = . For this example we cannot immediately use Taylor’s expansion

because the function f(g) is not defined at ¢ = 0. However, what we can do is expand

simply the regular term cose to obtain:

f(s)~i<1—€22+--.>.

Indeed the expansion is not defined at ¢ = 0 either. As an exercise, you can corroborate

the validity of this expansion numerically.

—
+
™

(3) Let f(e) = =

( . Then we note that, Taylor expanding each term:
sin

B

)

g
53/2

Sin(\/g)N€1/2*T+"‘.
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Then, we can write:

s l+54+- 1 1+5+-- 1 <1+§+ )<1+§+ )
51/2_%4_..._51/21—%%—--- gl/2 2 6

1 2e 9

In the previous examples, the gauge functions appeared naturally from the method used, Taylor’s

series. However, one may attempt to use a specified asymptotic sequence for the expansions. The
overall procedure goes as follows: suppose that the gauge functions ¢, ¢9,... are given, and that

an expansion of the form f ~ aj¢1 + az¢pe is sought. Since, by assumption, f = a;¢1 + o(¢1), and

assuming that we can divide by ¢1, we have that a; = lim ¢— This procedure can be repeated again
E—EQ 1

at each scale obtaining;:

a] = lim —

e—e0 @1
. f—aih
as = lim ———
e—eg o)
. f—a1¢1 — a2
a3 = lim
e—€o ¢3

Naturally here we are assuming that the gauge functions are nonzero at € = ¢g and that the limits

exist.

1 1
ExaMPLE I1.6. Consider f(e) = 152 + exp (—) Let ¢ = *1, k = 1,2,.... From the
€ €

above formulas we have:

m =l
—1 -1 exp (—1
agzlimf :lim< + p( 6)>:—1
e=0 € e-0\14¢ €

Thus, we can conclude that f ~ 1 — ¢ + O(e?). Notice that the exponential term has no

contribution in the expansion!

EXERCISE 11.7. Give a few examples of different functions with the same asymptotic expansion.

We finish this section with a brief digression on a couple of operations that will frequently appear
during the course, differentiation and integration.

Given a function f(z,e) ~ ai(x)d1(e) + az(z)pa(e) +--- as € — 0, we shall generally assume that
there exist functions by (x), be(x), ... such that
d
1 (@€) ~ bu(@)di(e) + ba(z)¢2(e) + -

d
as € — 0, where b, = ﬂ.
dz
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EXERCISE 11.8. Notice that the above assumption is not necessarily true and may depend on the

x X
choice of gauge functions. Take for example f = exp <77> sin (7> Compute an expansion in
€ €

terms of powers of €. Next compute the derivative of f and check whether 1z has an expansion
x

in terms of powers of €.

On the other hand, regarding integration, given that f(z,e) ~ a1(z)¢1(e) + az(x)pa(e) + -+ as
€ — €0, and assuming that the functions ay(x) are integrable in the interval x € [a, b] for all k, then

it holds that
/ab f(@,e)dz ~ (/abal(m)d:n> p1(e) + </ab CLQ(ZL’)dJI) da(e) 4+

ExampLE II.7.

as € — €g.

1
(1) Let f(e) = / exp(ez?)dz. Since exp(ez?®) ~ 14 ex? +--- for z € [0,1], then we have
0

1
that f(e)w/ (1+sx2+---)daz:1+§—|—---.
0

Uode _ , 1 1 g2
(2) Let f(e) = =t Notice that the integrand e R R +---. The
coefficients ay(x) are not integrable in the interval z € [0, 1] (there is a singularity

at x = 0). Of course in this case that is not really an issue because we can simply

compute the integral, which results in f(¢) = — arctan () As an exercise, expand
€ €

() = * arctan <1>

9 9

dx

————— The integrand has the expansion (using
g +sinx

w/3
(3) Consider the function f(e) = /
0
Taylor for € ~ 0):

1 1 g2
T ™~ -+
g4 +sinx s x sin x
As before, the coefficients are not integrable in an interval containing 0, and now

it is considerably more difficult to explicitly integrate the function. Notice that for

the gauge functions to be well-ordered (to form an asymptotic sequence) we require

—— < 1, which implies €2 < z for z near z = 0 (the singularity). Thus, let § € (0,1)
sinz
be such that e2 < § < 1 and let us split the integral as

S dx T3 dx
fle) = 2 ana T 2 Lsing
o €°+sinx 5 E°+sinx
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The second integral is now well-defined:

/3 dg /3 1 g2
o - 1—— +-- ) dx
5 € +sinx 5 s x sin x

:1n<\}§)—ln<tan<g)>+e2 \}g—cit@ 4

1
N——i—
~nd—In2432 4. s
2 g2 g2 42
~n|l—)|+—=-lnd— ———+---
<\/§> V3 § 12
For the first integral, let y be defined by # = £2y. Then
/5“ —52/5/52@/
o e2+sinx Jy €2 +sin(e2y)

2/5/22 dy

~E 6,3
0o e24ely—SF+---
2
:52/’6/6 dy E
0 52(1+y_£;%5+) 0o n Ln
' (_;_Zia ) for Ja] < 1
/6/52< 1 n €4y3 i )d lty—ay® = 1ty s
0 1+y 31 +y)? Y
o et /162 ) g2

:ln<1+€2>+6<264 262+31n<1+2>+(5 2—1>—|—

g2 12
2 52
= 11’1((5) —211’1(5) + K + ﬁ +

Adding the two integrals we then get

f(E) ~In (\%) _2In(e) + O(2).
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I1.4. Further exercises for this chapter

(1) Find the values of « (if any) such that for the following functions it holds that f = O(e®) as
e — 0. Repeat for f =o0(c%) as ¢ — 0.

(a) f=(1+H)

(b) f =esin(e)

(c) f=c¢eln(e)

(d) f=+Vz+ewithz e 0,1]

(2) Suppose f = O(g). Is it true that exp(f) = O(exp(g))?

(3) Suppose that f(g) = o(g(e)) for small £ and where f and g are continuous. Which of the

following is true?

(a) /Oefda:o</0€gd5>
o) [ sz =o( [ loiac)

o
(4) Assume that f ~ Zakaak. Find (at least up to k = 2) the appropriate powers ay’s with

k=1
o < agy1 and nonzero constants ay for the following functions:
a) f=——
(a) f 1 —exp(e)

(b) f=14e—-2In(l+¢)—

) f= /8 sin(z + ex?)dz
0

1+e¢

dx

2

w/4
(5) Find the first two terms in the expansion of the function f(e) = / -
0 g4 +sIn“x

(6) Find the first three terms of the asymptotic approximation of the Stieltjes function S(e) =
/ > exp(—t)
——~dt.
o 1+et

Hints: First, find the expansion of the integrand for small €. From here conclude that it
s necessary to let t < —. Neat, split the integral similar to the example in this section. Now
you can argue that the second integral is bounded, while for the first integral you can use the
expansion you just did to approximate it. You should arrive to S ~ 1 —¢e + 2% 4 ... (what

is the fourth term of the expansion?)

(7) Let f(e) and g(e) be positive and assume that f ~ g as ¢ — 0. Show that f* ~ ¢* for a > 0.
Is it true that exp(f) ~ exp(g)? Why?

(8) All functions in this exercise are continuous and nonzero in a full neighborhood of € = 0.
(a) Show that if f ~ g ase — 0 then g ~ f as e — 0.
(b) If f ~ g and h ~ k, both as ¢ — 0, is it true that f + h~ g+ k as ¢ — 07

(9) Find a two term approximation for the roots of 22 + x — ¢ = 0.



CHAPTER III

Perturbation Methods

ITI1.1. Matched Asymptotic Expansions

In this section we shall learn about a widely used perturbation method called Matched asymptotic

expansions. The best way to get to know the method is via an example:

ExaMmpLE III.1. Let us consider the second order ODE

2
(19) 6%4—2%—1—2];:0,
with initial and boundary conditions y(0) = 0 and y(1) = 1, and 0 < ¢ < 1. The most
important observation at this moment is that when we take the limit € — 0, then the equation
is not anymore of second order, but of first. This carries several problems: one of them being
the fact that the initial and the boundary conditions cannot be satisfied. Indeed, if we set € = 0:
(20) 2% + 2y =0,
which has solution y(t) = y(0) exp(—t). If y(0) = 0, then y(¢) = 0 for all ¢ > 0.
Problems of this sort are usually called “singular perturbation problem”. However, these terms
are not unified, and we will deal with a particular class of singular perturbation problems in
chapter VII.
To find approximations of the solution of the ODE, we will proceed in several steps. These steps

are applied analogously to a wide variety of problems.

Step 1. Outer solution: To begin, as we have already seen before, we will assume that the
solution can be expanded in terms of ¢, that is:

(21) ye(t) = yo(t) + evn(t) + eya(t) + - --
Substituting (21) in (19) we get:
d*yo | A’y dyo  dy
22 AU L T o (=0 L 29 L ) =0.
(22) 6<dt2+5dt2+ >+ <dt+€dt+ >+(yo+s%+ )=0

~~ ~~

@ ©)

Notice that @ and @ have leading order terms of order O(1) (those that do not
multiply €). In this case we say that @ and @ are balanced. The terms of order O(1)
give (20). The corresponding general solution is

(23) yo(t) = cexp(=t),

where c is an arbitrary constant. As noted above, with this equation we can at most

satisfy one of the given conditions, either y(0) =0 or y(1) = 1.

21
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Step 2.

(24)
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The intuition now is that, probably (but we will see that this is indeed true), the
solution yp is valid for a large interval in ¢ € [0, 1], but that either near ¢ = 0, or near
t = 1, the solution must be approximated in some other way. Let us assume, that
we are missing the approximation near ¢ = 0. In the next step we will find a better
approximation of a thin layer near ¢ = 0. To distinguish the solutions on different
regions of ¢ we will name them. We shall call (21) “the outer solution” (and (23) the
first term of the outer solution).

Boundary layer: Based on the previous assumption, that there is a boundary layer
at t = 0 where we want to obtain a more appropriate approximation, we introduce the
so-called “boundary-layer coordinate”

t

i="',
8&
where o > 0. Let Y (#) denote the solution under the new time-coordinate. Using the

boundary-layer coordinate, (19) transforms to

2
Y dY
51’2ad—~ + 27—
dt dt
If we want to now satisfy the initial condition y(0) = 0, then we let Y (0) = 0. Next

+2Y =0.

we assume that the solution of (24) has an expansion of the form
o0
Yo(8) = e W),
k=0

with 0 = By < f1 < B2 < ---. Substituting (25) in (24) we get:

d?Y; dY;
cl—2a 20 ) p9ee 04 +2(Yg4---)=0.
dt? dt —_———

-~

@ ©)

Our job now is to find a balancing relation between the terms in (26). Notice, first
of all, that the balance between @ and @ has already been considered in the outer

solution, so we must not consider it again. We are left with the following two options:

(1) If @ would be balanced with @, making @ the higher order term, then we
. . . 1 .
would need to impose 1 — 2a = 0, implying o = 3 This would make @ and @

of order O(1) and @ of order O(¢~/2). But notice that this is a contradiction
because O(1) is in fact a higher order than O(e~/2) as e — 0% We conclude that

this case is not possible.

(2) If @ would be balanced with @, making @ the higher order term, then we
would need to impose 1 — 2a = —q, implying that a = 1. In this case @ and @
are of order O(¢™!) and @ of order O(1). Thus, indeed @ is of higher order as
e —0.
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Setting a = 1, the leading order terms (those with order O(¢71)) of (26) corre-
spond to:
d*vp |, dYp
= 2—
de? * dt
The general solution of (27) is

=0.

Yo(f) = A(1 — exp(~20)).
We call Yy the (first or leading term of the) inner solution.

Let us now return to the initial and boundary conditions. Recall that we are
assuming that the outer solution (23) is valid away from ¢t = 0 and thus we impose it
to satisfy y(1) = 1. Then the particular solution is yo(t) = exp(1 —t). On the other
hand, we assume that the inner solution satisfies Y5(0) = 0. However, notice that
this condition is automatically satisfied. This, and the fact that the boundary-layer
solution contains a term of the outer solution will be used in the matching process of

the next step. See also figure 1.

10°% 107 107* 107® 1072 107! 10°

FIGURE 1. Sketch of the outer solution yy (blue) and of the boundary-layer or
inner solution Y (red). Notice that if one would set A = e, then the two solutions
would “overlap” over some interval.

Step 3. Matching: Recall that, in principle, both expansions yg and Y are approximations of
the same function. Thus, it is reasonable to expect that in the transition region (away
from t = 0 and of ¢ = 1) the two approximations coincide. This is achieved by asking
that the value of Yy as £ — oo (as it leaves the boundary layer) approaches the value
of yo as t — 0 (as it approaches the boundary layer). See Figure 2. Formally this is:

lim Yy = lim yo,
f—o00 t—0

which immediately implies that A = e.

23
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(28)
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yNY[) : Yb—e :
Yo=¢€ Y ~Yo l
l l -
1
O(e)

FIGURE 2. Sketch of the inner (O(e)) and outer regions. Within each of such
regions the solution y has different approximations.

Step 4. Composite Expansion: The final step is to bring the two obtained approximations

together, recall that neither (yo and Yp) can be used over the whole interval ¢ € [0, 1].
Since via the matching step we know that both approximation are constant (and
equal to e) away from their intervals of applicability, we can create a uniform so-
lution by adding the two approximations and subtracting what is common between

them, namely:

y(t) ~yo(t) + Yo(t) —e

=exp(l —t)+exp(l) —exp(l — %) —exp(1)

—_——
o Yo(t/2)
=exp(l —t) —exp (1 - 2;) .

See Figure 3 for a comparison between the analytic solution

y(t) = crexp (—@) + ey exp (@)
1

exp <—@) — exp (

with ¢ = and ¢y = —c1, and the approximation

(M—U)

(28).

> 1.5}

0.5
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FIGURE 3. Comparison between the analytic solution (in solid) and the approxi-
mation (28) (in dashed) for e = 0.2, 0.05, 0.01 in blue, red and black respectively.

%Recall that intuitively “a is of higher order than b” means that a < b.

REMARK III.1. The previous example contains, in some sense, all steps needed in the methodology
known as “Matched Asymptotic Expantions”. It is important to remark, however, that complications
may appear in different situations. A common one is when the limits used in the matching process do
not exist. Through more examples we will see some of such complications. Check further examples in
[13].

ExAMPLE II1.2 (Example III.1 continued (computation of the second term)). Usually, we will
be satisfied by computing the first terms of the expansion of the solution for a perturbation
problem. However, computing the second term may be insightful, as it can give us an idea of
the error of the first-term approximation. In this example, we compute the second expansion
term for the system of Example III.1.

The O(e) terms from (22) correspond to

dy, d*yo
2—/— + 2y = —— 1) =0.
a + 211 2 yi(1) =0

The corresponding (particular) solution is:

1
p =50~ texp(l— 1),
Similarly, from (26), the O(1) terms obtained by setting 51 = 1 lead to:

d*v; dv;
—— L2 = 2Y, Y1(0) = 0.
12 + 14 0 1(0)

The corresponding (general) solution is:

Y) = B(1 — exp(—2t)) — texp(1)(1 + exp(—2t)),

where B is an arbitrary constant and will be used when matching.

For the matching, let us introduce an “intermediate variable” ¢, = i where 0 < 5 < 1, and we
assume that n = 7(e) is the interval where the inner and outer solutions coincide. We choose
such a value for 3 because we want that the intermediate variable ¢, lies between the outer scale
O(1) and the inner scale O(e).

Notice that, by definition, we have ¢ = &° t, and f=¢f _ltn. Next we have:

Youter ~ Yo + €Y1 + - -~
:exp(l—t)—l—%(l—t)exp(l—t)-f—---

g
=exp(l — €6tn) + 5(1 — aﬁtn) exp(l — gﬁtn) I

| M

2

g2B¢2
B n
Nexp(1)<1—€tn+ +~->+ 5

3 3 5251537
(1 —=€"ty)exp(l) [ 1 =€ty + +--

1
= exp(1) (156tn+25+---).
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Through similar computations we obtain:
yinnerN}/O+5Y1+"'
~exp(1)(1 —’t,) + Be +--- .
1
Matching is achieved by setting B = 3 exp(1).

1
Since the above computations are independent of the precise value of 3, let us choose § = 3 for

the composite expansion, which therefore reads as:
1
y~yo+eyr+Yo+eY — <exp(1) (1 —\/Etn+2€>> +---

=exp(l —t) + %(1 —t)exp(l —t)+

Yo+ey1

1o ()50 (2))) (o0 )

Yo+eY1

(expt) (1= vty + 52) )+

v~
common

9

~ exp(1— 1) — (14 t) exp (-2;> v <(1 — ) exp(l — ) — exp <1 - 2;)) .

We can now notice that the difference between the 1-term and the 2-term expansions are of
order O(¢), as € — 0, in the interval ¢ € [0, 1].

EXERCISE III.1. In the previous example(s), we chose the boundary layer at t = 0. Repeat the
computations by choosing the boundary layer at t = 1 and compare the results. Pay particular

attention to the matching step, what do you notice?

t—1

Hint: use a boundary coordinate of the form t = -
€

REMARK III.2. As already mentioned, in this section we have presented already the essence of the
“Matched Asymptotic Expansions” method. As it is evident from the examples already treated, the
method may present several complications depending on the particular problem under study. In the
following sections we present a few examples of slightly more complicated scenarios. See [13] for even

more examples.

I11.1.1. Boundary layers. In this section we treat examples where more than one boundary

layer must be accounted for.

ExAMPLE III.3. Let us consider
d’y  dy
2 _
(29) g @‘i‘gta— ——eXp(t), 0<t<1,

with boundary conditions y(0) =2, y(1) = 1.
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Step 1. Outer expansion: As before, we let the outer expansion be given as:

Youter ~ Yo + -+ .

Thus, the first term of the outer expansion is simply

(30) Yo = exp(t).

We now notice that yg cannot satisfy either of the boundary conditions. This is an
indication that there are boundary layers at each end of the interval t € [0, 1].
Step 2. Boundary Layers and Balancing:
a) Let us begin with the boundary layer at ¢ = 0 by introducing a boundary layer

~ t ~
coordinate t = —. As before, we denote by Y = Y (¢) the re-scaled solution. Thus

o

(29) now reads as:

d’Y  .dY -
e el — Y = —exp(e®)

SN——
o @
N_<1+5a£+€2:t2+...>'

We notice that, since a > 0, the convenient balancing is between the terms @,
@, and @ by setting & = 1 (a smaller value of a would lead to a balance
already accounted in the outer expansion, while a larger value would not lead to

any balancing). Thus, by setting @ = 1 and to leading terms considering that
Y ~ Yy +---, we have:
d?Yy
dt?
The corresponding general solution is

(31) —Yo=-1,  Y(0)=2

Yo(t) = 14 Aexp(—t) + (1 — A) exp(t),

where A is an arbitrary constant to be used for matching. Due to the definition

t
t = — and because the boundary layer is located at t = 0, the matching condition

6 ~,
is lim Yp(t) = lim yo(t), which leads to A = 1, and so
t—o0 t—0

Yo(#) = 1+ exp(—)

b) Next, let us look at the boundary layer at ¢ = 1. For this let us introduce the

boundary-layer coordinate:

Accordingly, we denote by ¥ = f’(f) the solution in this layer. Notice that now
t € (—00,0]. Re-scaling accordingly in (29) leads to:

%y . v - X
2-28 B 15 _ B
—— 4+ (1 4+ £et)e — =Y = —exp(l+£Pt
dt2 ( ) dt ;p(,_)/
~—exp(1)(1+ePi+--)

3
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By choosing 5 = 1 we can, in fact, balance all terms obtaining, up to leading order

terms:

?vg  dvp, R
0 0 Yo exp(l),  Yo(0) =1
i g o= meel) (0)

The corresponding general solution is

(32)

~ PN PN

Yo(t) = exp(1) + Bexp(Ayt) + (1 — exp(1) — B) exp(A_1),

—1++5
where B is an arbitrary constant to be used for matching and A+ = 7\[ The

matching requirement now is analogous to the previous boundary layer. Namely,
we require that the value of Yo(f) as it leaves the boundary layer is equal to yo(t)
as it approaches the boundary layer. In other words we now look for the constant
B that allows the following equality to hold:
lim Yy (f) = lim yo(t).
t——00 t—1

The previous condition implies that B = 1 — exp(1). Hence:
Foli) = exp(1) + (1 — exp(1)) exp(r4 ).

Step 3. Composite expansion: We are now ready to derive the composite expansion. Anal-
ogous to previous cases, the composite expansion is obtained as:

Y ~ Youter + Yinner — ‘cOmmon terms”.

In more detail we now have, up to 1-st order terms:

y~w®)+ Talt/2)+ o (220 = 0(0) - (1)

~ exp(t) + exp (—Z) + (1 —exp(1)) exp (/\+(t—1)> +

3

REMARK III.3. Notice in the previous example that both inner equations ((31) and (32)) have at
least one common term with the outer equation (30). This is always evidence that the matching may
work.

EXERCISE 111.2. Consider the differential equation

d’y | dy
5@+€E—exp(y):—2—t, 0<t<l,
and boundary conditions y(0) =0 and y(1) = 1.

(1) Show that the outer solution is given by Youter ~ In(t +2). Is any boundary condition
satisfied by the outer solution? From here argue that there are two boundary layers,
one at t =0 and another att = 1.

(2) For the boundary layer at t = 0 propose the boundary-coordinate as t = Justify

t
) Ve
this choice and find the first term of the inner expansion Yy(t). Hint: the solution Yj
s given tmplicitly.
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(3) For the boundary layer at t = 1 propose a boundary-layer coordinate t = 7 Justify
€
this choice and find the first term of the inner erpansion %(f). Hint: the solution Y
is given implicitly.

A~

(4) The composite expansion is now given by: y ~ yo(t) + Yo(t) + Yo (£) — yo(0) — yo(1).
Show that this leads to:

y~m(ﬁf>+n®+%@

ExAaMPLE II1.4. Matched asymptotic expansions is not limited to boundary value problems.

Let us now consider (an auto-catalytic system):

d
5d—1: = exp(—t) —uwv? —u

dv
dt
with initial conditions u(0) = v(0) =1 and 0 < ¢ < 1. We assume that, due to the exponential
term, there is a boundary layer at ¢ = 0. This means that we shall find an inner solution that

(33)
= w? +u—v,

is valid near t = 0 and an outer solution valid away from ¢ = 0.
For the outer solution let us assume that uguter ~ g + cu1 + - -+ and Vouter ~ Vo + ev1 + - - -.
Substituting these expansions in (33), and considering only the O(1) terms we have:

0 = exp(—t) — uovg — ug

dUO 2
— = UV + Ug — Vg.
dt 0V 0 0

The solution of this first approximation system is
vo(t) = (t + a) exp(—t)
exp(—t)
up(t) = —5——=
o) vi+1’
where a is an arbitrary constant. Notice indeed that the initial condition cannot be satisfied by

the outer solution. .
For the layer near ¢ = 0, let us consider the re-scaling variable 7 = —. As usual we denote by

£
U=U(r) ~Uy(r)+ -+ and V = V(1) ~ Vo(7) + --- the inner solutions. Substituting the

inner solutions in (33) leads to (up to terms of order O(1)):

dU() 2

— =1-UyV; — U
dr 070 0
dVo

=9 _p

dr ’

with Up(0) = V5(0) = 1. The corresponding particular solution is

Uo(r) = 5 (1 +exp(~27))
Vo(r) = 1.
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To match the solution we notice that the condition to be satisfied is lim Uy(1) = %in% uo(t) and
T—00 —

lim Vp(7) = limvy(t) leading to a = 1. Finally, the composite expansion reads as:
T—00 t—0

exp(—t) exp (=2)
(t+1)2exp(—2t) +1 2
v~ (t+1)exp(—t).

u ~

EXERCISE 111.3. Consider the differential equation

d? d
SV B 0<t<l,

de? dt
with boundary conditions y(0) =1 and y(1) = 3.
(1) Simulate the differential equation using a computer. Does the simulation hint at the
boundary layers?
Hint: Try with € = 0.001 and look near t = 0.
(2) Conclude from the previous simulation that there are two boundary layers near t = 0.
(8) Show that the outer expansion is Youter ~ t + 2 and plot it on top of the simulation of
item 1.

~ t ~
(4) Consider now a time re-scaling of the formt = —. Denoting by Y = Y (t) the re-scaled

.
solution, obtain the re-scaled differential equation. Argue that, besides the balancing

leading to the outer solution, there are two distinguished limits: one for « = 1 and the

other for a = 3 What portions of the solution do each of these limits correspond to?

1
(5) Compute the first-term expansions for each layer (a =1 and o = 5) Then, show that

the composite expansion is of the form:

t
t 4 exp (—) +Qexp(—%), 0<t<,

1, t=0.

ITI.1.2. Interior layers. In the previous sections we have seen examples where the boundary
layers occur at the end-points of the the interval of interest. In this section we give an example of a

problem with an interior layer.

ExaMmPLE III.5. Let us consider

?*y  dy
34 —_— =Y =0 0<t<1
(34) e Vg TY=0 <t<l1,
with boundary conditions y(0) = 1 and y(1) = —1. The outer expansion is proposed as usual,
namely: Youter ~ Yo + -+ -. Substituting in (34) and accounting only for the first term of the
expansion we get:

dyo

35 — — 1o =0.
(35) Yo dt Yo

The ODE (35) has solutions yg = 0 or yg = t + a, where a is an arbitrary constant. This implies
that, depending on the inner solution we will have to be careful with the choice of the outer

solution to match to.
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Now, how do we know there “must be” an interior layer?. To realize this, let us rewrite (34) as
d’y _ dy dy
(36) “az " Var VT \ae )

and let us consider first the outer solution y ~ yo = 0. If we were to use such an outer solution,

then due to the boundary condition, we would need boundary layers at t = 0 and ¢t = 1. In the
2

d d
boundary near ¢ = 0 we would require ditJ <0,y >0and —‘g > 0, however no solution of (36)
can satisfy that. A similar situation occurs if one would hope for a boundary layer at ¢t = 1, see
a schematic representation of this argument in figure 4 (it is left as an exercise to arrive to the

same conclusion if one would take the first term of the outer expansion yo =t + a).

FIGURE 4. Hypothetical situation if one would look for a boundary layer at
t = 0. This situation is not compatible with the original equation. In particular,
it is not possible to satisfy the behavior on the boundary layer near t = 0 (blue

dashed curve).
From the previous arguments, now we ask ourselves if an interior layer would be compatible
with the ODE. For this, we take the outer solution yg = ¢t + a (the solution yo = 0 is of no help

here). The equation yo = t + a is a straight line with positive slope. Let ty € (0,1) be some
interior layer. To the left of ¢y (that is for 0 < ¢ < tg) we let

yo=1t+1

noticing that it satisfies the initial condition. To the right of ¢y (that is for ¢y <t < 1) we take
the outer solution

Yo=—2+1

noticing that it satisfies the boundary condition. Within the layer region, and to the left of

d d?
to, we would have —‘z <0,y >0and d—t‘g < 0, which is compatible with (36), see a sketch in

figure 5. A similar argument applies on the right of 5. What is important to notice is that,
before engaging into blindly computing boundary layers, it is worth stopping for a moment and
qualitatively analyzing where it is most likely to find the inner layers.

!
\
1
-

S
-

~+

—1 +

-

U
\

FI1GURE 5. Sketch of the interior layer at ¢t = #.
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From the previous arguments, now we propose the interior-layer coordinate
t—to
gx

t=

As already suggested above, we will now consider two outer regions, one for 0 < ¢ < tg and
another for ¢ty < t < 1. As usual, let Y = Y () denote the solution in the re-scaled coordinate.

Then (36) now reads as:

2
dredY oy d
de? dt
Choosing a = 1 and letting Y ~ Yy + - - -, we get the balanced equation
dyg? dYy
(37) aez "V di
Integrating once the previous equation one gets
— =-Y; + A.
a  2°°
Depending on the sign of A one can get different solutions as follows:
1 — Dexp(Bt
L=Dep(BY)
1+ D exp(Bt)
2
Yo=<( —, A=0
LR o,
t
B tan <CB2) , A>0,
\

where B, C, and D are further arbitrary constants.
Since within the interior layer we would like the derivative of y (or of Y') to be negative, it seems

reasonable to choose the solution to (37) as

Yo(f) = Bl — Dexp(Bii),
1+ D exp(Bt)

with B and D different from zero. Without loss of generality we may take B > 0.
Next, the matching conditions we want to satisfy are:

lim Y (t) = lim yo(t)

t——o0 t—ty
Eliglo Yo = tlir% vo(t),
which leads to the system
B=ty+1
B =2—1,

3 1
with solution B = — and t5 = —.
The previous matching process has allowed us to fix the constant B, however the constant D is
still arbitrary. We can now resolve this issue by imposing that yo(tgp) = 0 or equivalently that
Y5(0) = 0 (refer back to the sketch...). From such a condition we get that D = 1, thus
~ 31 —exp (%ﬂ

Yo(i) = o P2l
o) = 5 e (30)
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It only rests to compute the composite expansion. For this example, it is very helpful that the

outer expansion on both sides of ¢y is given by the same expression. Thus we have:

t—1/2
y~yo(t) +Yo ( / > — “common terms” +- -
€
yo(1/2)
1 —exp (% t=1/2 ) .
1+ exp (%

II1.1.3. Corner layers. In the examples we have seen before, the layers are “roughly speaking”
given by intervals where the solution to the ODE rapidly changes. However, it is possible that what
changes rapidly is the derivative instead. In these cases, as we will see below, the solution seems to

have a corner.

ExAMPLE II1.6. Let us consider the ODE

d%y 1 1\ dy 1

_— — — — _— = — et 1
(38) 5dt2+<t 2> <t+2> Q. <t+2>y 0, 0<t<l,

d
with boundary conditions y(0) = 2, y(1) = 3. Notice, indeed, that the coefficient of di; is zero
1
(and changes sign) at t = —. For this reason we can already anticipate that the layer is located

1
As usual, we consider that the outer expansion is of the form youter ~ yo+---. To leading terms

1 1Y\ dyo 1 B
(1-3) (+5) G - (4 3)w=0

1 dyo
t—= ) =2~y =0
< 2 ) dt Yo )

1
y0:A<t_2>7

with A an arbitrary constant. Again, it is not possible to satisfy the two boundary conditions

we have

and therefore

with only one integration constant.
t—1o .
. Notice

{67

To locate and analyze the solution in the layer, let us introduce the variable ¢ =
€
that with the outer solution we can write a solution satisfying one of the boundary conditions

as:

(39) Youter ™~
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To locate the value of ty we simply notice that if ¢y = % then (39) is continuous (although not
differentiable). For other choice of ¢y (39) would be discontinuous (now it should be clear why
this case is called “corner layer”).
To find the inner expansion we proceed as usual. Let Y = Y () denote the re-scaled solution,
and then (38) transforms to

2

a7y = oz dY
TR (e (e + 1)

dt2 E — (€at~+ ].)Y = 0

a2y - dy -
1-2a aj2 «
€ — + (t+e“t)— — (e“t+1)Y =0.
de? T+ ) dt (% +1)
1
Now we can notice that the appropriate balancing is achieved by letting o = 5 Next, contrary
to the previous examples, let us assume that ¢ipper = Y ~ €7°Yy + ---. The constant g will

become useful later. To leading terms we thus get

d?y, .dYy
— i — —Yy=0
a2 Tt =0

which has solution:

: R 72 i 2
Yo(t) = Bt+ C | exp (—) —I—t/ exp <—> ds | .
2 0 2
Notice that for [¢| large:
Bt + C\/if, >0
Yo ~ p
Bt — C’\/;?, t<0

wof(mc\/?) >0
Yinner ™~
~ T ~
et (B—C\/7> , t<O.

Notice, however, that yinner i8S unbounded as ]ﬂ — 00. So, to match the outer and the inner

and therefore

[\

\V)

. t—3
expansions, let us introduce yet another layer variable ¢ = TQ With such re-scaling we get:
€
—4e®t, t <0,
Youter ™~ . N
6", t>0

and

Yinner ™~

570+K—1/2£

grotr—1/2¢ (B - C\/§> . t<o0
(B + C\/§> , t>0.
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1
As anticipated above, we can now match the expansions by letting vo = 3 obtaining the

matching conditions

leading to B = 1 and C' = 54/ —. Therefore, the inner expansion is of the form

72 i 2
NRPRYEY T Y g _5
Yinner ~ € (t + 5\/; (eXp ( B ) + t/o exp < 5 ) dS)) .

e

I11.2. Other methods

There exist a further variety of asymptotic methods depending on the problem at hand. Several of
them, however, work under a similar philosophy as in the previous sections. In this section we briefly

present a few other methods using an example. Further details and examples can be found in [13].

I11.2.1. The WKB method.

The name WKB stems from the last names Wentzels, Kramers, and Brillouin, who were among
the many scientist that popularized the method. This method is applicable whenever, for some

reason, one can predict that the behavior of the solution is exponential.

ExampLE II1.7. Let us consider the equation

d%y

2 _

(10) 2% 4l =0,

where ¢ is some smooth function. To motivate the ansatz we will make later, let us first consider

the case where ¢(t) = ¢ is a constant. In that case the general solution is

0= resn (00 v (~21).

The main assumption of the WKB method is that the exponential behavior of the solution when
q is constant, can be extended to approximate the solution of (40). In other words, when using
the WKB method we assume that the solution of (40) is of the form

(41) Yy ~ exp (g?) (yo(t) + ey (t) +---).

It follows from (41) that

h(t 1 dh d d
y/w@(p(éj) <€adt(y0+5y1+...)+y0+5y1+...>




36

III. PERTURBATION METHODS
and
@ ex @ L @ 2( + ¢ + )+3% %+5%+ +
412 Ploa ) |2a \(qp ) WO 91 codr \ar
1 d%h d?yo  d*y
eadtQ(yO+€yl+m)+dt2+8dt2+”l

Substituting these expansions in (40) we get
1 (dn\® 2 dhdy  1d%h_, d%
42 2l (=) Y+ =Y+ — | —q(t)Y =0,
(42) c (52°‘<dt) tagwa teaey Taz) W
where Y =yo+ey1 +---.
Notice that the exponential term has canceled out. This occurred because the equation we are
considering is linear. By further inspection we find that to balance the € terms an appropriate
choice is a = 1.
For the terms of order O(1) we have:

dh\?
4 — | —qt) =
(43) () —a0=o
which has as solution
t
h(t) = + / Ja(5)ds.
0

Notice indeed that if ¢ is constant we obtain the same argument in the exponential as in our
initial analysis.

For the terms of order O(e) we have

dr\? _dyodh d%h
(yl <dt> +2E5+y0@ —q(t)y1 =0

dn\? dyo dh d%h
—) —q) | 422 4y =
yl((dt) q<)>+ at at Toge =Y

=0

dyo dh d2h
92 R
at dat TYap

< dyo dh d?h
Yo

=0.

DA -
at ar T

Yo = <dt>

= cq(t)”'/4,

dh d
Let u = y3 —. It follows that &

4 " > = 0. Therefore, yq is given by

where we have used the equation for the O(1) terms and c is some arbitrary constant. With

this, we have that up to first order terms, the solution of (40) can be approximated by

y ~ q(t)" /4 (01 exp <i /Ot \/@ds> + ¢y exp <—i /Ot @ds)) ,
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where the (possibly complex) constants ¢; and ¢ help us match the boundary conditions. It is
evident now that for the above solution to be valid, one would require ¢(t) # 0. Points where
q(t) = 0 are called turning points.

Let us now consider a particular expression for the function ¢(t). Let ¢(t) = —exp(2t), and
suppose that the boundary conditions are y(0) = a and y(1) = b. Then (by re-labeling the
constants (—1)_1/401 — ¢i, i = 1,2) we have:

s (1) (e (1220 1y emp (20 )

which can be rewritten as

o () () (52

where ¢; and ¢ are new (complex) constants. We can compare this expansion with the analytic

y(t) = AJy (exi(t)) +BY, (exz(t)) ,

where A and B are constants defined by the boundary conditions and Jy and Y; are Bessel

solution, namely

functions. See figure 6 for a comparison.

FIGURE 6. Comparison between the approximate solution (red) and the exact
solution (black) for € = 0.5 on the left and £ = 0.1 on the right. The boundary
conditions are y(0) =1 and y(1) = 0.
We now proceed with finding the error of the approximation yg. This is done by computing the
second term in the expansion y; from the terms of order O(g?) in (42). Accordingly we have:

d®yy  d%h dh dy, (dh

2
S, S o = q(t)e.
TR e e T TR dt) v2 = a(t)y2

Using (43) we further have

d®yy  d%h th dyy

S ¢ Sheu .
ETCI Vo R T

(44)

37
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dh
—1/4, = Ve and assuming that y1(t) = yo(t)w(t), we have:
d?yg  d%h dh dy;
— N e
TE TR TaT

dg\? 1 d? d
5<Q>__qq+2fniﬂzg

Using the identities: yg = ¢

=0

16 \ dt
Therefore (44) holds with solution y; = yow if w satisfies

dw 1 1 &2 1 [dq\?
(45) dw 11 &g 5 1 (dg
dt  8¢3/2dt?  32¢5/2 \ dt

1 dg 11 d% 6 1 (dg\? ,
q3/2dt> = gw@ — BEW a . Therefore, (45) can be rewritten as:

dw _1d(1.dg) 1 1 (dg)’
dt — 8dt \ ¢3/2dt 32¢5/2 \dt )’

11dg 1 [t 1 dg(s)\?
=D =t — d
w(®) * 8 ¢3/2 dt + 32 Jy q(s)%/? ( ds >

Notice that li
dt

which leads to

h
where D is an arbitrary constant (a similar expression is found if one would consider T —/9).
Since the expansion, up to the second term reads as y ~ yo +cy1 = yo + eyow = yo(1 + ew), we
have that a good approximation is guaranteed if |ew| < 1, that is, if

1| 1 dg| 1 [t 1 [dq(s)\*
D+<-|—=—=|+= d 1
6<| ‘_‘_8 q3/? dt‘+32/0 q(s)%/2 < ds )<
holds (for the functions |- | means the co-norm). In particular, we notice that such a bound can
be achieved if ¢(t) # 0 in the interval of interest.

We end this section by summarizing that the WKB method is useful whenever we assume that
the behavior of the solutions is exponential. This is the usual case for linear systems, thus it
is frequently applied in such cases. Much of the difficulties, of course, arise depending on the
function ¢(t). In particular, if ¢ takes a zero value somewhere in the interval of interest, the
above methodology may fail. See more details in [13]. A few nonlinear problems may be treated
with the WKB method as well.

IT1.2.2. Poincaré-Lindstedt (or multiple time scales) method.

We recall that the method of matched asymptotic expansions consists of constructing different
solutions for appropriate intervals of the independent variable ¢. In contrast, the Poincaré-
Lindstedt method assumes a (single) generalized solution that is itself transformed, by intro-
ducing new coordinates, to adapt to each of the layers.

ExAMPLE III.8. Let us consider the ODE

dQQ dy
46 —2 e 4y = t>
( ) 2 9 ‘ y O, 0,
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d
with initial conditions y(0) = 0 and d—i(O) = 1.
Since the parameter ¢ does not multiply the highers derivative, it is safe to assume that the
solution admits a regular power series expansion of the form

(47) Ye(t) ~yo(t) +eyr(t) +--- .
Substituting (47) in (46) we get
d*yo d*y1 | dyo 2
— —_— + = O = 0.
e +yo+6<dt2 T +y1 | +0(7)
Thus, at order O(1) we have
d*yo dyo
=0 0)=0,—(0)=1
dr2 + Yo ) yO( ) Car ( ) )

which has (particular) solution

yo(t) = sin(t).
Similarly, at order O(e) we have

d2y1
W +y1=— COS(t)a yl(o) = 07 7(0) = 07

which has (particular) solution

yi(t) = —%t sin(t),
and therefore:
(48) ye ~ sin(t) — gtsin(t).

Notice that the expansion we just computed grows linearly with ¢. In fact, if we compare y.
with the analytic (or even numeric) solution of (46), as in Figure 7, we see that our expansion

is less accurate once et ~ 1.

4 1.5
1 f
2
0.5
>0 A = 0 N
-0.5
-2
1 U
4 . -1.5 .
0 50 100 0 50 100

-~
o~

FIGURE 7. Comparison between the analytic solution of (46) (in red) and the
approximation y. (in black) for e = 0.1 (left) and € = 0.05 (right). Notice that

the approximation seems to be reasonable for t < —.
€

In a qualitative sense, the discrepancy of our approximation stems from the second term in (48).

If such an expansion is to be well-ordered, then we require et < 1.
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To overcome the failed approximation for large ¢, consider new time parameters
T = t

T2 = <€at.

The time 75 is usually referred to as “slow time scale”.

The important assumption here is that the two variables 7 and 75 are independent. This means
that
d dr 0 dr 0

@& At o dt om

)
N 87‘1 67‘2
d¢? or? 011079 ors’
In this way (46) transforms to
0? 0?2 0?2 0 0
49 o 2% 200 ¥ Z a =0
(49) <87’12+ ¢ 871872+€ 07'22>y+5<871+5 87’2>y+y ’

where now y = y(71,72), and therefore, the initial conditions now read as y(0,0) = 0 and

0 0
— +e%*— 0,0) =1.
< or 1 or 2 ) y( )

At this moment one should not despair. Although it may look like we have over complicated
ourselves (after all we now have a PDE), the advantages will become evident shortly.

We now proceed with a similar methodology as usual. Since now y is a function of two variables,

we assume an expansion of the form

(50) Y = ye(T1,72) ~ yo(71,72) + eyr(r1,72) + -+ .
Substituting (50) into (49) we get:

(51)

o2 2 .
2% o
<3712 +2e D107 te 673) (yo(71,72) +eyi(m1,m2) + -+ )+

0 0
€ < +€a> (yo(m1,72) +eyi(m1,72) + ) + (Yo(71,72) + eya (T, 72) +--+) =0,

87'1 87’2
From the terms of order O(1) we get
82
241 )y =0
(o 1) m=o

0
with initial conditions y(0,0) = 0, a—yO(O, 0) = 1. The general solution is given by
71
(52) yo = c1(72) sin(71) + c2(72) cos(71),
where, to satisfy the initial conditions, we have ¢1(0) = 1, ¢2(0) = 0.
d? d
At this moment, recall that the term O(et) in (48) comes from the equation ?Zéo +y1+ % =0.

We want to avoid such a (secular) term. Inspecting (51) we notice that at order O(e) a similar
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2

Yo
87’ 1 67 2
also appears, and it will help us resolve our problem. Thus, the appropriate balance is achieved
by letting o = 1 leading to (at O(¢)):
0? 0?
il 9~
or? vt 0110719

expression appears. However, if we would choose o = 1, then a new term, namely 2e

Yo + o+y1=0

o

PN, D
87'12 91= 87’167’2 0 87’1 Jo-

From (52) we further have

82 d d
(53) (67—12 + 1> Yy = — <261 + Cl) COS(Tl) + (202 + 62> sin(ﬁ).

d7'2 dTQ

The general solution of (53) is

1 de . 1 de .
y1(71,712) = ~5 (2(17_; + cl> el sm(n)—i (20172 + 02> 71 cos(11)+c3(m2) sin(71)+ca(T2) cos(m1).

We observe that the secular terms (7 sin(-) and 7 cos(+)) still appear. However, we can eliminate

them by appropriately choosing the functions ¢; and ¢o. Indeed we want to solve:

which have general solutions

1
01(7'2) = Al exXp (—27'2>

1
co(m2) = Agexp <—27'2) .

Recalling that the initial conditions impose ¢1(0) = 1 and ¢2(0) = 0 we finally get

c1(7s) = exp (-éfg)

ca(m2) = 0.
Therefore, since 19 = €t, we have obtained the leading term expansion

et

(54) Ye ~ XD <—2> sin(t) + - --

See in Figure 8 plots for the error between the analytic solution and (54).

41
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—3
0.01 : 510
0.005
= >
| 0 0
= =N
-0.005
-0.01 5 '
0 50 100 0 50 100
¢ ¢

FIGURE 8. Difference between the analytic solution of (46) and the approxi-
mation y. (54) for e = 0.1 (left) and £ = 0.05 (right). Notice that indeed the
approximation error is already quite small for sufficiently large time.

EXERCISE 111.4. Find that the two term expansion for the previous example is

Ye ~ Xp <—€2t) (sin(t) - %Ezt cos(t)> :

Plot the error between this expansion and the analytic solution.

Hints: what is required is to find y.

. S 1 et . g2
The analytic solution is y(t) = ———=exp | —— | sin [ t4/1 — —
1_ ¢ 2 4
1

In this example we have seen the basic way the method of multiple time scales works. Notice that
the method helped us to obtain a single solution valid on a sufficiently large interval (in contrast
to matched expansion where we need to compute a solution on different layers). Moreover we
were able to resolve the issue induced by the appearance of secular terms. There are several
generalization of the method, see [13]. For example, two time scales may not be enough, and
one may be required to define 71 = t, 7 = et, 73 = €%t and so on. Furthermore, the new time

o

variables may have a more complicated dependence on ¢, for example 73 = (1 +Z wie” )t, where
k=1

the coefficients wy are found during the solving process (this is known as Lindstedt’s method).

Finally, we mention that the correct scaling is not always evident, and it may be necessary to
start with something like 7 = %, 7 = €°t with a < 8

EXERCISE IIL.5. Solve the same problem as in the previous example by assuming 71 = (1+wie)t.

Compare your result with that of the example.
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IT1.3. Further exercises for this chapter

(1) For the following second order systems, find a composite expansion of the solution and sketch
it. To verify, it is recommended to compare the approximation with a numerical solution of

the differential equation.

4’y dy
(a) Sy +e(t+ 1)5 —y=t—1,fort€[0,1] and y(0) =0, y(1) = —1.

2
(b) 5% — eap(t)y = f(t), for t € [0,1] and y(0) =1, y(1) = —1.

d? d
(c) sd—t‘g -y <d?; + 1) =0, for t € [0,1] and y(0) = 3, y(1) = 3.

(2) The Michaelis-Menten model for enzyme catalyzed reactions is given by

dsS

a——SJr(quS)P

dP
EE—S—(H‘FS)P,

where S(0) = 1 and P(0) = 0. The variables S(t) and P(t) are the concentrations of the
substrate and of the product, respectively, of the catalyzed reaction, and u, x are positive
constants with p < k.

(a) Find the first term of the expansion in the outer layer

(b) Find the first term of the expansion in the initial layer

(¢) Find a composite expansion.

(3) The Poisson-Nerst-Planck model for the flow of ions through a membrane is given by

dp | d¢
de P T
dn  d¢
& "d P
d?¢
2 _
a2 TP

where z € [0, 1], the variables p and n describe the concentration of ions with valency 1 and
—1 respectively, and ¢ is the potential. Let the boundary conditions be ¢(0) =1, ¢(1) = 0,

p(0) =4, and n(0) = 1. Suppose that « # [ are positive constants satisfying

- i <1
p(0)n(0)

(a) Assume that there is a boundary layer at = 0. Derive the outer and boundary-layer
approximations. Is it possible to match the approximations? Provide enough reasoning.
(b) From the previous item argue that there should be another boundary layer at x =
1. Derive the corresponding approximation and a composite solution. Show that the

approximate values of the concentrations at z = 1 are
p(1) ~ p(0) exp($(0))(1 — #)2/ (@A)
n(1) ~ n(0)exp(4(0))(1 — ,{)204/(044—6)_

(4) Find the first term expansion of the solution for the following problems. Whenever possible,

it is recommended to compare the approximation with a numerical solution. Note that for the
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nonlinear problems the solutions may either be defined implicitly, or the transition layer may
contain an undetermined constant. Both are correct and should not be worked-out further.

d? 1\ d
(a) ad—té/ =— <t2 — 4) d—?i for ¢ € [0,1] with y(0) =1 and y(1) = —1.

d%y dy 3 )
(b) e =Ygy Y for ¢ € [0,1] with y(0) = 3/5 and y(1) = —2/3.

d? dy 1
(c) Tg +y(l+ y2)d—i — 5y =0fort €[0,1] with y(0) = ~1 and y(1) = 1.

(5) Consider the problem
d’y _ dy
E—s =yY—
de? dt
for t € [0, 1] with y(0) = a and y(1) = —a and a > 0.
(a) Argue sufficiently to justify that y(1/2) = 0.
(b) Find a composite expansion of the solution.
(c) Show that the exact solution is of the form
1— Bexp (42
) = A DoRE)
1+ Bexp (?)

where, for € > 0 small, A = A(e) ~a (1 + 2exp (;:)) and B = B(g) ~ exp (;g)

(6) Consider the problem

d*y dy
e —f(t)aa
for ¢t € [0,1] with y(0) = a and y(1) = —b and a,b > 0. Moreover f(t) is smooth with
df

a(t) > 0 and f(to) = 0 for some ty € (0, 1).

(a) Explain why there is at least one point in the interval 0 < ¢ < 1 for which y(¢) = 0.

(b) Find the exact solution of the problem and obtain the equation that must be satisfied
to determine the point ¢ for which y(¢) = 0. Is the solution to such an equation unique?

(c) Find a two term expansion for the solution of the equation y(¢) = 0 of the previous item.

Note that the second term is defined implicitly.

dy dy\?

for ¢ € [0,1] with y(0) =1 and y(1) = 1.
(a) Assume that there is a corner-layer solution. Argue why such an assumption is reason-

(7) Consider the problem

able. How many outer-solutions are there? (there is more than one possible one, but it

is possible to rule out one)
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(b) Find the corner-layer solution and construct a composite expansion.

(8) Use the WKB method to find an approximate solution of the following problems:

d? d
(a) sditg + Qd—gz +2y =0 for ¢t € [0,1] with y(0) = 0 and y(1) = 1. Compare your solution
with the expansion obtained using Matched asymptotic expansions (first example of

section III.1).
d?y 1\ dy .
(b) 5@-1— (t—2> E-l—y:() for t € [0, 1] with y(0) =2 and y(1) = 3.

(9) Consider the problem
d%y
— + kP (et)y =
dt2 + (E )y 07
for t > 0 and with y(0) = a and %(0) = b and where k() is a smooth function. Make
the change of coordinates 7 = et and then use the WKB method to construct a first-term

approximation of the solution.

(10) A common approach to use the WKB method (when it is not clear that the solution has an
exponential behavior) is to perform the change of variables y(¢) = exp(w(t)). Consider the
following problem

2
52% —q(t,e)y =0.

(a) What equation must be satisfied by w(t)?

(b) Suppose that q(t,e) ~ qo(t) + €q1(t), where g9 # 0. Propose that w ~ &~ *(wq(t) +
ePuy (t) +---) and find the first two terms in the expansion of w. Afterwards, find the
resulting expansion for y.

(c) Suppose that q(t,e) ~ eqo(t) + e2q1(t), where gy # 0. Find the first two terms in the

expansion of w, and then determine the resulting expansion for y

(11) For the next two problems, find the first-term expansion of the solutions that is valid for
large ¢t. By this we mean that a time-scaling should be introduced to remove the first secular

term appearing in a regular expansion.

@ LV (WY 0 or ¢ e [0,1] with y(0) = 0 and (o) = 1
de? a) ¥~ ’ = e~
d*y d d
(b) sd73 + d—i{ 4y =0 for t € [0,1] with 5(0) = 0 and di;(m —1.
(12) The equation for an oscillator can be written as
Py dV(y) _
dt? dy 7
for t > 0 and where V(y) is a potential function. Consider initial conditions y(0) = ¢ and
%(0) = 0. Find the first-term expansion of the solution that is valid for large ¢ for the

following potential functions:

(a) V(y) = —cos(y) (the classical pendulum).
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(b) V(y) = (1 — exp(—ay))? with a > 0 (the Morse oscillator).
(¢) V(y) =exp(y) —y (the Toda oscillator).

(d) V(y) = (1 +y) " — (1 +y) "% (the Lennard-Jones oscillator).



CHAPTER IV

Normal Forms

In this chapter we study an important aspect of perturbation theory. Namely, we now study what
is known as normal forms. Briefly speaking, a normal form (up to some notion of equivalence) is the
“simplest” representative of a certain class of problems, in our case, ODEs. A normal form is obtained
after successive changes of coordinates. As we will see, in some sense we attempt to simplify, as much
as possible, the Taylor expansion of a vector field near, say an equilibrium point.

Before going into further details, let us see a first useful normal form.

d
THEOREM IV.1 (Flow-box theorem). Consider a smooth nonlinear system given by & _ f(x),

xz € R", and assume that f(x*) # 0. Then, there exists a neighborhood U of x* with local coordinates

y = (y1,...,Yn) such that in this coordinates the original system has the form

dyi

AN
dt

dy2 .

a Y
dyn

— =0.
dt

PROOF. A proof can be found in [22], Chapter 5, Theorem 7. O

The previous theorem can also be regarded as a “straightening” or “rectification” of the vector
field, see [2]. For the rest of this chapter, we are mostly interested in normal forms near equilibrium
points, and especially of singularities. Let us first describe the reason.

Assume we deal with a certain vector field
dx

(55) dy
i By + g(x,y),

where € R", y € R™, the matrices A and B are of appropriate dimensions, and the functions f and
g vanish together with their derivatives at the origin. Moreover, let us assume that A has eigenvalues
with zero real parts while B is hyperbolic. In fact, without loss of generality, let us simply assume
that B has eigenvalues with strictly negative part (thus the center manifold is attracting). Since the

center manifold W is tangent to the center eigenspace, i.e. to {y = 0}, we can express W€ as a graph

We={(z,y) e R" x R" |y = h(x)},
oh

with h(0) = 0 and 8—(0) = 0. Because the center manifold is invariant, the (local) flow restricted to
x
W€ is therefore governed by

(56) ‘(%” — Aw + f(z, h(z)).

47
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Knowledge about the behavior of (56) together with the fact that W€ is attracting, gives us
sufficiently good information of about the dynamics of (55). Thus, indeed it suffices to restrict our
attention to systems of the form (56).

Next, given (56) we proceed to obtain a simpler representative by performing “near identity”
transformations & = x + ¢ (x) with the goal of eliminating as much as possible, the nonlinear terms
appearing in f(z, h(z)).

Although our main interest is on bifurcations, let us first exemplify the normal form procedure by
answering the question: when can a nonlinear system be reduced to its linear part?

Let us start with a system of the form

dx
(57) E—Aa:—k‘--,

where A has distinct eigenvalues.

DEFINITION IV.1. The spectrum of A, spec A = {A1,..., A\, }, is said to be resonant if

(58) A =< my A >,
n
where m = (my,...,my) € N*, m; > 0 and Zmz > 2, holds for some A\, € spec(A) and A =
. i=1
(A1y...,An). The number |m| = Z m; is called “the order of the resonance”.
i=1

EXERCISE 1V.1. The Hopf bifurcation is characterized by a pair of conjugated eigenvalues £
at the bifurcation point. Is this pair resonant?

We now have a fundamental result due to Poincaré.

THEOREM IV.2. If the eigenvalues of the matriz A are nonresonant, then the nonlinear system

(57) can be reduced to the linear equation d—gz = Ay by a near identity (formal') change of coordinates
z =y +O(|lyl[*).

The proof of this theorem can be consulted in [4]. Instead of repeating here the proof, let us
provide some intuition as of how the proof, and the normal form computation works.
Let us consider the linear system
dy

=A
dt Y,

LGiven as power series.
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and consider a near identity transformation x = y + h(y), where h(y Z hi(y) with hg(y) a vector
k>2
with entries being a homogeneous polynomial of degree k. Under such a transformation we obtain:

dx dy oh dy

dat Ay dt

- (1+‘;Z> Az — h)

(e 2 ae

= Az + [ghAx - Ah] +
= Az +) [MAx - Ahk]
k>2
) Ohy,
Notice that for each k the term [Ax,hi(x)] = a—Am — Ahy, is of degree k. The important
x

observation is that if we can match [Az, hi(z)] to the k-th higher order terms of & = Ax + f(z),
then there exists a transformation that eliminates such a term (just go backwards in the above line of
thought). It turns out that if A is non-resonant then the so called homological equation

[Aa:,h] :f7

where [-, -] denotes the Lie bracket, has a solution for any vector field f of degree at least 2.
In the case of resonance (58), the homogical equation cannot be solved for those monomials =™

(using multi-index notation). Such monomials are called resonant.

THEOREM IV.3 (Poincaré-Dulac). If the eigenvalues of the matriz A are resonant, then the non-

d
linear system (57) can be reduced to the linear equation d—i = Ay + g(y) by a near identity (formal)

change of coordinates x = y+ O(||y||*), where all the monomials of g(y) are resonant. More precisely,
for every non resonance A\ =< m,\ >, the nonlinear monomial remaining in the normal form is
:cmék.

For the proof see [4].

ExampLE IV.1. Consider the system

d
T = A\r1 +-
dt
(59)
dr2 e e
dt 2 ’

for some k € N and k£ > 1. In this case the resonant monomial is iL‘]f and therefore we can reduce
(59) to

— =
a0

d.i[?g

i = kAxg + acl

EXERCISE IV.2. Perform the computations to verify this example.
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EXERCISE 1V.3. Is a matriz with at least one eigenvalue with zero real part resonant?

EXERCISE 1V.4. Obtain the normal form, modulo formal change of coordinates, of the system

dxq
dxo

In the case one is interested in a linearization about a hyperbolic equilibrium point, there are
stronger results, of which we mention the following two.

THEOREM IV.4 (Sternberg). Let X and Y be C* wvector fields on R™ with 0 as a hyperbolic
equilibrium point. Suppose that there exists a formal transformation taking the Taylor series of X at
0 to that of Y. Then there exists a C*-diffeomorphism transforming X to'Y .

The above theorem is telling us that “two vector fields that are formally equivalent about a
hyperbolic equilibrium point are smoothly equivalent”. Furthermore, suppose X is a vector field
whose linear part at 0 has no resonances. Then, one can conclude that X is smoothly linearizable.
The following theorem tells us that the same conclusion is possible under resonance conditions, as
long as the transformation is only C°.

THEOREM IV.5 (Hartman-Grobman). Let X be a C* wvector field with 0 being a hyperbolic equi-

librium point. Then, X is (near 0) topologically equivalent to it linear part.

p

So far we have performed what is known as “formal normal form”. That is we have performed
a formal change of coordinates by which we mean that the transformation is given as a power
series. Moreover, we have not addressed the question of whether such a transformation is
convergent. The question whether the normal form is analytic of C*° is more subtle, and shall
not be discussed in this course.

Let us return to the nonlinear system

(60) ]

Here, parameters may be included trivially. Let A = Df(0)z denote the linear part of (60). Let
‘H;. denote the space of homogeneous polynomial vector fields of degree k. We define the adjoint map
induced by A as ada : Hp — Hy given by

adg(h) = [Az, h].

Now we state the main result regarding normal forms.

THEOREM IV.6. Consider (60) with f(0) =0 and Df(0) = A such that f is of class C". Choose
a complement Gy for ada(Hy) in Hy so that Hy = ada(Hk) + Gr. Then, there is a formal near

d
identity change of coordinates that transforms (60) into & Ay + Zgl(y) + R, where g; € G; and

dt P
Ry = c(|yl").

For a proof you can see [10].
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EXAMPLE IV.2 (The focus singularity). For the normal form of the focus singularity we have a

linearization given by the matrix

A:

0 —Wo
wo 0 |
where the eigenvalues are A\j 2 = Fwpz, wo # 0.

We will see in the next chapter that we can look at the complexified version, namely

dz

ar et
dz B

a T et

It suffices to look at the equation for z, since the equation for z is obtained by conjugation.

In this case we have a resonance condition of the form A; 4+ X2 = 0, or equivalently (m;—mg) =1

with mq 4+ mg > 2. This means that the resonant monomials are of the form 2™ z™~! =

]z\Q(ml_l)z, and so the corresponding normal form reads as

& 2+ c|z]?z +
dt - 0 )

where ¢ is some constant (possibly complex).

(61)

Although the above computation was simple and straightforward, let us exemplify the normal

form procedure if one would not go to complex coordinates. For clarity, we are now considering

the system
d
% = —x9 + f1(x1, 22)
d
% =x1 + fa(x1,22),

where for simplicity we set wg = 1.
Let us first look at the action of ad4 on Hs. The space Hsa is generated by the basis

0 0 0 0 0 0
2 O v 2 0 o U B
(62) {1’1 8%1 , L1X2 8551 y L2 (9x1 » 1 (‘31’2 , L1X2 85172 y L9 81172}

Therefore, it is enough to look at the action of ad 4 into any of such elements. Let h; be any of
such base monomials. Then

adA(hi) = [A.CL‘, hz]

oh!  Oh!

|0z dxa | |2 0 —1| |h}

Clon2 on2| | @ | |1 o |n?
81‘1 81’2

0 0 0
and, for example, ady4 x%— = | —2z120—, —x%— . Since Hj, is a linear space, and
ox1 ox1 0x9

ady : Hp — Hp, we can represent the action of ad 4 on Hjy by a matrix. For the case of Hs, the
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corresponding 6 X 6 matrix representing the action of ad4 on Hs is

0o 1 0 1 00
-2 0 2 0 10
0 -1 0 0 01
-1 0 0 0 10
0O -1 0 -2 0 2

0 0 -1 0 -1 0
In this matrix the i-th column corresponds to the coefficients of the image of ad 4 for the basis or-

dered as in (62). For example, x?a(zl ~ (1,0,0,0,0,0) ", and so ad 4 (?) ~ (0,—2,0,—1,0,0)" ~

_2961562883:1 BT Similarly, :1:1952822 ~ (0,0,0,0,1,0)" and therefore ad4 <x1:c2822) -
0 9]

The above representation matrix is invertible. This implies (or rather verifies) that the homo-
logical equation can be solved for any quadratic vector field. Thus, every quadratic term of (60)
can be removed.
Next, we look at the action of ad4 on H3, which has basis
0 0 0 0 0 0 0 0
3 2 2 3 3 2 2 3
Ty =—, XXy, T1T5——, Xg——, Ty =——, L]Xo——, L1T5——, Lo— ¢ .
{ 18:1/‘1 ! 28(E1 ! 28$1 28%1 163:2 ! 28$2 ! 28952 28332 }

That is, Hs has dimension 8, and the matrix representing the action of ad4 on Hs reads as

o 1 0 o0 1 0 00
-3 0 2 0 0 1 00
0o -2 0 3 0 0 120
0o 0 -1 0 0 0 01
-1 0 0 0 0 1 00
0O -1 0 0 -3 0 20
0o o0 -1 0 0 -2 0 3
o 0 0 -1 0 0 -120

-1 0
0 1
-1 0
0 1
o | -1
-1 0
0 -1
-1 0

This means that a complement of ad4(#3) can be chosen to be given by the vector fields

0

Oxy’

ox1

—wy (21 + a5) 5 — wa(af + 23)
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and

0

2 2 2 2
To(x| + —z1(z] + 2 .

2( 1 2)3x1 1( 1 2)8$2

Therefore, applying the normal form theorem IV.6 we conclude that there exists a coordinate

transformation which transform asystem of the form

dl’l
dZL'Q

into the system

d
o oy (—au + bv) (u® + v?)
dt
(63) d
ik (av + bu)(u® + v?),

for some constants ¢ € R and b € R.

EXERCISE IV.5. Corroborate that the normal forms (61) and (63) are indeed equivalent.

REMARK IV.1. We emphasize that the choice of the complementary space of ad4(Hy) is far from
unique. Some choices may be more convenient than others. The choice we did for the above example

is rather convenient when we want to rewrite the system in polar coordinates.

We finish this chapter by addressing the question of how to obtain normal forms of a bifurcation.
In the case we are interested in the family

dx

el

dt ($7 M)?

such that F(z,0) = f(x), we can simply consider the extended system

dzx

el

3z = Pl

dp

U 0.

One can proceed as above with the normal form calculations by taking now a coordinate change

d
r =y + H(x,pu) where H(x,p) = (h(x, p), ), which evidently leaves the equation —l: = 0 invariant.
In practice, what changes now is that we assume that the coefficients of the power series of h depend

on pu. Families of vector fields as above are relevant when studying bifurcations.

ExaMPLE IV.3 (Saddle-node bifurcation). Consider the family of scalar systems

d
d—f:F(:v,u), r€e€R, ueR,
OF OF
where F(0,0) =0, %(0,0) =0 and o # 0.
We consider the extended system
dz
T _F
g = Flep)
dp

dt
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The linearization at the origin is given by the matrix

AZOCL]7
00

OF
@(0’ 0) # 0.

where a =

5 0

~ 0 0
We now consider the action of ady on Hy = span { z?—, pr—, u>=—,0,0,0 &, because we are
ox ox’" Ox

d
assuming that the change of coordinates leaves d—'l; invariant. Noticing that
0 0
d 2 ) = 2apuz—
aca (z 81‘) e

adg <ani>
0
27 =
ada (u 8x> 0,

~ 0
we find that a complement of ad 4 on Hs is given by #2—=—. Thus, using the normal form theorem
z
IV.6 we conclude that we can transform the initial system into the normal form
dz

dt

where the choice of sign in front of 22 is just for convenience. This equation is know as “the

:aﬂ_$2+...’

normal form of the saddle-node bifurcation”. To provide further details, let a = 1. In this case

the leading part of the normal form reads as
(64)

We notice therefore that if 4 > 0, then there are two hyperbolic equilibria * = +./u. For p =0
such equilibria collide, while for p < 0 there are no equilibria anymore. The previous behavior,

depending on the parameter p, can be captured in a bifurcation diagram as shown in Figure .
T

FIGURE 1. Bifurcation diagram of the saddle-node bifurcation (64). The
parabola corresponds to the equilibria given by x? = pu. For p > 0 the equi-
librium point z* = /i is attracting while the equilibrium point z* = —/ is
repelling (solid and dashed curves respectively).
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IV.1. Further exercises for this chapter

Compute the next non-zero term in the normal form of the saddle-node bifurcation. Does
including such a term in the normal form change the local behavior (sufficiently near the
origin) of the system?

Consider the family of scalar systems

d
d—f:F(x,,u), xR, ueR,
OF OF 0’F
where F'(0,0) = 0, (0,0) = 0, =— = 0 and — # 0. Obtain a normal form up to
Ox ou O

quadratic terms. What type of bifurcation is this? Draw the corresponding bifurcation dia-
2

0°F
gram and the phase portrait. What happens if the “non-degeneracy condition” 92 #0is
1L
O*F
oudx

407

replaced for

Consider the family of scalar systems

%:F(m,u), re€R, peR,
F F ’F
where F(—x,pu) = —F(z,n), F(0,0) =0, ZJ:(O,O) =0, g,u =0 and (’f,uax # 0. Notice that
2 3
now the condition —(0,0) = 0 must be imposed, and thus one may assume ——(0,0) # 0.

02

Explain the reason.

Ox3

Obtain a normal form up to cubic terms. What type of bifurcation is this? Draw the

corresponding bifurcation diagram and the phase portrait.

Consider the family of planar systems

d

—x:F(x,,u), re€R? peR,

dt

such that the system at p = 0 is given by (63). Obtain a normal form (up to degree 3).
What type of bifurcation is this? Draw the corresponding bifurcation diagram and the phase

portraits for topologically different members of the family.

OF
Hint: notice that (‘T(O) #0c R
i






CHAPTER V

Singularities and Bifurcations for planar systems

In this chapter we restrict ourselves to autonomous planar systems

dx

where z € R? and f is a sufficiently smooth (at least twice differentiable) vector field. Some singular-
ities and bifurcations for scalar systems are discussed in the next chapter.

REMARK V.1. For basic background and terminology on dynamical systems and ODEs, refer to
Appendices A.2 and A.3.

Recall that 2* is an equilibrium of (65) if f(z*) = 0.

DEFINITION V.1. We say that an equilibrium point z* of (65) is:

e Hyperbolic if the eigenvalues of D, f(x*) have nonzero real parts.

Non-hyperbolic if at least one of the eigenvalues of D, f(z*) have zero real parts.

Elliptic if the eigenvalues of of D, f(z*) are purely imaginary with nonzero imaginary part.

Nilpotent if both eigenvalues of D, f(x*) are exactly zero.

The classification of equilibrium points is important because it provides qualitative information of
the asymptotic behavior of the orbits of (65) near the equilibrium point. This is better understood by
linearizing (65) near z*. Indeed, using Taylor’s formula, it follows that:

d .
(66) = Duf(a")y + O(llyl ),
where y = x — 2" and A := D, f(z") is known as the Jacobian. The solution of the linear part of (66)
is given by
(67) y(t) = exp(A(t — t0))y(to)-

Now, from (67) it is evident that knowledge of the eigenvalues of the Jacobian matrix suffices to know
the solution y(t) which is a valid approximation of the solution of (65) close enough to the equilibrium
x*. For example:

PROPOSITION V.1. Consider (65), let z* be an isolated equilibrium point, and denote by A1 2 the
eigenvalues of Dy f(x*). Assume that ®(A1) < 0 and R(A2) < 0. Then, there exists a neighborhood U
of ¥ such that the w-limit set of any point x € U is z*, that is w(z) = z* Vx € U.

PROOF. Let us first consider that the eigenvalues are real (negative) and A; # Ag. Then, because

the Jacobian can be diagonalized, the linearized system reads as

dyr

= =)\ h

1 191 + hi(y)
dys

—= =) h

& 2y2 + ha2(y),

57
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where |h;(y)| < M||y||?, i = 1,2, for sufficiently small ||y|| and M > 0. Let us define the Lyapunov
function
1
V(t) =5 (1) +u:(0)?).

Notice that V' = 0 if and only if y = 0 and is positive otherwise. Next, differentiating with respect to
time:

dv(t)  dy dyo

Ta Mar Tar

= y1(M1y1 + ha(y)) + y2(A2y2 + ha(y))

= Myt + dows + y1hi(y) + y2ha(y)
<Myt + Ay + (1 + y2) M (Y7 + 3)
=2(A1 4 A+ M(y1 +12))V (1)

< 2(A1 + A2+ M(|ya] + [y2))V ()

Thus, there is a sufficiently small constant > 0 such that the term A1 + A2 + M (|y1| + |y2|) is
strictly negative for all 0 < ||y|| < r. This means that the disc B, = {y € R? : [|y|| < r} is positively
dV (t)

dt
initial condition within B, converges towards the origin y = 0. (I

(or forward) invariant. Thus |, = 0 if and only if y = 0. Therefore, every trajectory with

EXERCISE V.1.
e Complete the above proof by relaxing the condition of real eigenvalues.
e Show that if (A1) > 0 and R(N\2) > 0, then there exists a neighborhood U of x* such
that a(x) = 2" Vx € U.

For the saddle case, we have the following important theorem generalizing the situation in linear

case (recall theorem A.7).

THEOREM V.1 (Stable Manifold Theorem). Consider (65), let z* be an isolated equilibrium point,
and denote by \1 2 the eigenvalues of Dy f(x™). Assume that the eigenvalues are real with A\; < 0 < Aq.
Then

*

(1) there exists a curve W¥(x™) tangent at x* to Ey (the eigenspace of A1), such that w(x) = x
for all z € W*(x*). We call W*(x™) the stable manifold of z*.

(2) there exists a curve W*(z*) tangent at =™ to Eo (the eigenspace of A2), such that a(x) = x
for all z € W*(z*). We call W*(2*) the unstable manifold of x*.

*

To summarize this section, we emphasize that there are three qualitatively different hyperbolic
equilibria: sinks that correspond to points attracting every nearby solution, sources that correspond

to points repelling every nearby solution, and saddles that attract and repel solutions. See figure 1.

EXERCISE V.2. Prove that a hyperbolic equilibrium point remains hyperbolic under sufficiently

small smooth perturbations.

d
Hint: consider a system given by & _ pa +eh(x), where D is a diagonal matriz with nonzero
diagonal elements and h is smooth and satisfies h(0) = 0. Assume that the eigenvalues of the

perturbed problem depend smoothly on € for e sufficiently small (which is true indeed [20]).
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F1GURE 1. Sketches of the 3 different types of equilibria. Left: a sink, for which the
stable manifold is the whole plane and the unstable manifold is empty. Middle: a
saddle, for which the stable and unstable manifolds are 1-dimensional each. Right: a
source, for which the stable manifold is empty, and the unstable manifold is the whole
plane.

Note: this is not the most general case (which is more cumbersome to prove), but it does give a
general idea of what one means by “persistence” under small perturbations.

We now turn our attention to periodic orbits.

DEFINITION V.2. A periodic orbit is an orbit that forms a closed curve, denoted by I', in a region
D C R? of the phase-space. Alternatively, if 2o € D is not an equilibrium point, and there is a 7' > 0
such that ®7(x¢) = xg, then the orbit through xg is a periodic orbit with period T'. We call a T' such
that ®4(z) # zo for all 0 <t < T (and ®r(x) = x) the least or minimal period.

A trajectory contained in I" shall be denoted by v = v(¢). To analyze the dynamics near a periodic

orbit, let us perform the change of coordinates y = z — 7. Then (65) is rewritten as:

dy
(68) a—f('wry) fO)-
The linearization of (68) at y ~ 0 is given by
dy
69 — = At
of

where A(t) = 8—( v(t)). Notice that A(t) is periodic with minimal period T, that is A(t +T') = A(t).
x

Solutions of (69) can be written as y(t) = M (t)y(0), where M (t) is a fundamental matrix'. Tt follows

from Floquet’s theory” that any such M(t) can be written as

M(t) = P(t) exp(K1),
where P(t+7T) = P(t), with P(0) = I (the identity matrix), and K is a constant matrix. This implies

that the asymptotic behavior of the solutions of (69) depends only on the eigenvalues of the constant
matrix K, which are called the characteristic exponents of I'. The matrix M (T') = exp(KT) is called
the monodromy matriz, while its eigenvalues are called characteristic multipliers.

1Recall that a fundamental matrix of an ODE is formed by putting on the columns linearly independent solutions of the
ODE.
2We will not discuss this theory during the course, but you are referred to [11].
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PRroPOSITION V.2. The characteristic exponents of I' are given by 0 and

af, o
T / <a£ aﬁ)“ﬂdﬂ

EXERCISE V.3. Prove the previous proposition.
Hints: .
(1) Show that % satisfies (69), that is, that it satisfies the equation % = A(t)7H.
(2) From the previous step, show that 4(0) = exp(KT)%(0). Notice that this means that

exp(KT) has an eigenvalue equal to 1. Thus, show that the previous observation implies

that K has an eigenvalue equal to 0.
(8) Next, it is known that any fundamental matriz M (t) satisfies the equation

(70) %det M(t) = Te(A(t)) det M(2).

Do not prove (70), but use it (together with the fact that P(0) = 1) to show that

det exp(KT) = det M(T) = exp ( /O ! Tr(A(t))dt> .

(4) Finally, argue from: a) the determinant is the product of the eigenvalues, b) by taking
the logarithm of det(exp(KT)), ¢) by using the identity log(det M) = Tr(log M) for
any matriz M, and d) the definition of A(t), that the result follows.

REMARK V.2. In a sufficiently small neighborhood of I' the non-zero characteristic exponent of I
gives information on its stability: if it is positive/negative then I is locally repelling /attracting. In fact,

0 0
we say that a periodic orbit I' is hyperbolic if the characteristic exponent — / <fl + fZ) ~(t)dt
Z2

is nonzero.

We will now present one of the fundamental results for planar vector fields. First we need another
definition.

DEFINITION V.3. Let 2] and z3 be two saddles. Assume that there is a point 2o € W*(x])NW?*(x3)
(that is the unstable manifold of 27 and the stable manifold of 5 intersect). Thus, the orbit through
0, Yz, 1S contained in W*(x]) N W?¥(235). This implies that a(x) = 2] and w(z) = x5 for any z € v4,.
Such a connection is called heteroclinic if z] # x5 and homoclinic if ] = 5. When no distinction is
necessary, we refer to both of them as “saddle connection”. See figure 2.

We are ready now to provide a full classification of limit sets for vector fields in the plane:

THEOREM V.2 (Poincaré-Bendixson). Let D be a compact positively invariant region containing a
finite number of equilibrium points. For any x € D, the w-limit set w(z) is one of the following:
(1) an equilibrium point, or
(2) a periodic orbit, or
(8) a set consisting of a finite number of equilibrium points x7,...,x; and orbits Ty such that
a(l'y) = zf and w(l'y) = ;.

PROOF. A proof can be found in Chapter 16 of [7]. O

A very useful property related to limit sets is that the phase space may be arranged by regions
sharing the same limit sets.
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FiGUrRE 2. Sketch of the two different types of saddle connections. On the left a
heteroclinic connection and on the right an homoclinic loop.

DEFINITION V.4. Let w = w(z) be the w-limit set of a point « € D. The basin of attraction of w

is the set

Aw)={yeD : wy) =w}.

EXERCISE V.4. Related to the previous definition, prove that if D is a positively invariant set
containing w then the sets A(w) N D, D\A(w) and 0A(w) N D are positively invariant. Make a
sketch of each of such sets.

At this moment, it is worth recalling that in this course we are interested on perturbations of a
“well-known” unperturbed problem. Sometimes such perturbations change drastically the qualitative
behavior of the problem, some other times, the perturbed and unperturbed problems are qualitatively

the same. Thus, we now discuss an important class of vector fields.

DEFINITION V.5. Let D C R? be a compact region. Denote by X*(D) the set of all C* vector
fields on D that point inwards on the boundary of D (thus D is positively invariant under the flow
generated by any X € X*(D)).

0 0
e For a vector field X = X (xl,:vg)a— + Xg(xl,xg)a— the norm
X1 1)

op1tp2 Xj
opP1 1 or2 9

|| X]||cx = sup max  max
zeD J=1,2 0<pi+p2<k
P1,p220

is called the C¥-norm. The resulting topology on Ck(D) is called the C*-topology.

e Let X and Y be two vector fields on X*(D). We say that Y is a C¥-small perturbation of X
if ||Y — X||w is small for certain k.

The above definition allows us to formalize what one usually means by “a small perturbation”.
However classification under C%-smallness can be too coarse, while classification under C'-smallness

can be too fine.

ExXAMPLE V.1. Consider the scalar functions f(xz) = —z and g(z) = —z + e+/|z|, with D =
[—1,1]. Then

llg = fllco = supey/|z| =e.
zeD
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However, even if the vector fields generated by f and g are C%-close, they are not qualitatively
similar: it suffices to notice that & = f(x) has one equilibrium point, while & = g(x) has two,

for any € > 0.

As we can see from the above digression, we are generally interested in comparing the qualitative

behavior of two systems.

DEFINITION V.6. Two vector fields X € X¥(D) and Y e X*(D) are said to be topologically
equivalent (or Co—equivalent), if there is a homeomorphism® h : D — D, that takes orbits of X onto
orbits of Y by preserving the direction (but not necessarily the parametrization) of time. Equivalently,
if we denote by ¢; and ¢4 the flows of X and Y respectively, the vector fields X and Y are topologically
equivalent if there is a homeomorphism h and a monotonously increasing bijection 7 : R — R such
that

Pr@y(@) = hogpoh™ (),
forall zx € D and t > 0.

REMARK V.3. One can also define C*-equivalence by requiring the map h in the previous definition
to be a C* diffeomorphism.

d d
ExAMPLE V.2. Consider the one-dimensional systems & ax and & _ by with 0 > a > b.
The corresponding solutions are x(t) = exp(at)xz(0) and y(t) = exp(bt)y(0). Consider the

homeomorphism
b/“, x>0
h(.I) =140, x =0,
—|zlt?, z <o0.

The map h serves as a homeomorphism making the two vector fields topologically equivalent.

d d
EXERCISE V.5. Consider the one-dimensional systems d—f = ax and d—g = by with a # b nonzero

constants. Is there any choice of a,b such that the two vector fields are C'-equivalent?

Answer: no.

0 1+¢
systems topologically equivalent? Are the perturbed and unperturbed systems differentiably (Ck
with k > 1) equivalent?

Answer: yes, no.

1 0
EXERCISE V.6. Consider the linear system & = ! ] x. Are the perturbed and unperturbed

EXERCISE V.7. Show that, up to topological equivalence, hyperbolic equilibrium points in the
plane are classified in three categories: sinks, sources, and saddles. Hint: assume that the
eigenvalues are real and simple, and show equivalence only of the linear parts.

3We recall that a homeomorphism is a map that is continuous, bijective, and with continuous inverse
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EXERCISE V.8. Show that, up to differentiable equivalence, hyperbolic equilibrium points do not
have a finite classification. Hint: it suffices to show this in dimension 1. Show in that case that

differentiable equivalence requires that the eigenvalues of the linear part coincide.

From the previous examples and exercises we now see the utility of the following definition.

DEFINITION V.7 (Structural stability). A vector filed X € C¥(D), with k > 1 is said to be
structurally stable if there exists an ¢ > 0 such that every other vector field Y € C*(D) with |[Y —
X||cr < € is topologically equivalent to X.

Notice that the concept of structural stability balances out C'-small perturbations with C-equivalence.

This will lead to important results.

THEOREM V.3 (Peixoto-Andronov-Pontryagin theorem). A vector field X € X1(D) is structurally
stable if and only if
(1) X has finitely many equilibrium points, all being hyperbolic,
(2) X has finitely many periodic orbits, all being hyperbolic,
(3) X has no homoclinic nor heteroclinic connections.

Furthermore, the set of structurally stable vector fields is dense* in Xl(D).

REMARK V.4. We do not discuss a proof of the previous theorem, but mention a few important

comments:

(1) Notice that the conditions to determine that a vector field is structurally stable are rather
simple. Yet, they are not always easy to check, especially the third condition.

(2) The fact that structurally stable vector fields are dense is extremely important. It implies that
for any structurally unstable vector field, one can find a sufficiently small perturbation that
makes it structurally stable. It also implies that “typical” vector fields have only hyperbolic

equilibria and/or periodic orbits without saddle connections.

V.1. Singularities of codimension 1

In this section we turn our attention to structurally unstable vector fields. There are two main
reasons for this: structurally unstable vector fields represent boundaries between different classes of
structurally stable vector fields. Thus, structurally unstable vector fields may give us information
about transitions between different classes of equivalent vector fields. Another important reason is
that although typical vector fields may no be structurally unstable, it is possible (as we shall see)
that one-parameter families of vector fields (that is curves in X*(D)) do contain structurally unstable

vector fields.

REMARK V.5. In these notes, we restrict ourselves to local bifurcations of equilibria of planar
systems. Namely, we study the saddle-node bifurcation, and the Hopf bifurcation. A more extensive

discussion on bifurcation theory can be found in, for example, [10].
For convenience, let us denote by Sy the set of structurally unstable vector fields in X*(D).

DEFINITION V.8. A subset S € X¥(D) is said to be a C" submanifold of codimension 1 if there
exists an open set U C X*(D) and a C"-function H : U — R such that DH(X) # 0 in U and
S={fel: HX)=0}

4A subset A of a topological space V' is said to be dense in X if every point of X either belongs to A or else is arbitrarily
“close” to a member of A.
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The above definition can be applied to characterize the set of structurally unstable vector fields.
For example H : X*(D) — R could be given by an eigenvalue of a linearization matrix. It turns-out

that Sp is not a submanifold, but as we will see below, a subset of Sy is indeed a submanifold.

DEFINITION V.9. A structurally unstable vector field X € Sy is called singular of codimension 1
if there exists a neighborhood Uy of X in Sy such that every other vector field Y € Uy is topologically
equivalent to X. The set of singular vector fields of codimension 1 shall be denoted by S7. Elements

of &) are called singularities (of codimension 1).

It turns out that S is a submanifold of codimension 1 of X*(D). This indeed implies that for
X € 81, &1 divides a small neighborhood of X into two regions of different equivalence classes of vector
fields. As a consequence, if X € S!, then there is a family of vector fields Xy € X*(D) (depending
smoothly on ) such that for all Y € X% (D) with ||Y — X||cx small enough, Y is topologically
equivalent to X for some A € R.

ExAMPLE V.3. Consider the subspace of linear vector fields in the plane

d d
L(D) = {X e X¥D)|X = ar o+ byay} .

In this case, the set of structurally unstable vector fields Sy is given by the subclass of vector
fields that have at least one zero eigenvalue, i.e., such that ab = 0. However, the the set of

singular vector fields of codimension 1, &, is given by the vector fields with strictly one zero

0 0
eigenvalue (and not two). Let Xy € Sj, for example Xy = 08— + ba—, with b > 0. Let X
€z Y

0 0
denote 1-parameter family X, = )\8— + ba—. Of course Xy = Xy|x=0. Any vector field in the
x Yy

neighborhood of X is topologically equivalent to some element of the family X,. See a sketch
in

Xo
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FIGURE 3. Schematic representation of L and the different subspaces. The space
L can be divided by vector fields such that ab = 0, the blue lines. Each of the
blue lines is a codimension 1 subset of L, i.e. §;. Notice that these lines divide L
into four regions of topologically equivalent vector fields. However, vector fields
in different quadrants are not topologically equivalent. The origin is the vector
field such that ¢ = b = 0 and therefore Sy is the union the different S;’s and the
origin. For any X € & there is a one parameter family X such that any vector
field near Xy is topologically equivalent to some member of X,. The previous
fails if Xg is the zero vector field.

DEFINITION V.10. Let X € S;. An unfolding of X is a family of vector fields X, € X*(D), \ € R?,
depending smoothly on A and such that X = Xj.

ProposiTION V.3. Let X € S§;1. There exists a 1-parameter unfolding Xy such that for every
Ck-close vector field Y to X, Y is topologically equivalent to some element of the unfolding X.

PROOF. Let Z € X¥(D) be such that DH(X)Z > 0. Such a vector field always exists because
DH(X) # 0. Let € be sufficiently small and define the subsets

Wo={Y €81 : ||Y — X||cr < &}
Wi={N=Y0+AZ : YWy, 0< A< ¢}
W_={Y=Yo+AZ : Yo e Wy, —e < A< 0}.

It follows from definition that H(Yp) = 0 for all Yy € Wy. Furthermore, for sufficiently small £ we
have that
d
aH(YA) =DH(Y)N)Z > 0.
Therefore, by continuity, one concludes that H > 0 in W, and H < 0 in W_. Hence, all Y € W,
are structurally stable, and since W, is open, they are topologically. Analogously, one can argue that
all Y € W_ are topologically equivalent. We thus conclude that any family Y, is an unfolding of X

because it contains elements in Wy, Wy and W_. O

REMARK V.6. Unfoldings are very useful in many contexts. For dynamical systems, they are
useful to describe the behavior of a vector field near a nonhyperbolic equilibrium point, and their
perturbations. Unfoldings play a major role in Singularity Theory, so your are encouraged to take
that course.

REMARK V.7. In the rest of this section we detail the saddle-node and the Hopf bifurcations, both
of codimension 1. There are not all of them, but we discuss them due to their importance. See the

further comments at the end of this chapter.

V.1.1. Saddle-node bifurcation of equilibria. The first singularity of codimension 1 that we

study is the one related to a simple 0 eigenvalue. Notice that a matrix
0 =
0 a
0 0
0 al

with a # 0 can be diagonalized to
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Thus, in appropriate coordinates, a vector field with a simple zero eigenvalue at the origin can be

written as:
del
T = fi(z1, 22)
t
(71)
dzz _ axs + fa(x1,z2)
dt - 2 2\L1,42),
. . o Ofi
where the functions f; are sufficiently smooth, satisfying f1(0) = f2(0) = 0 and (0) = 0 for
Ty

i, =1,2.
The following result generalizes the stable manifold theorem, see also theorem A.8.

THEOREM V.4. Regarding (71):

e There exists an invariant curve W€, called “a center manifold”, that is tangent to the x1-axis
(the center eigenspace) at the origin.
e Ifa >0, then there is a unique unstable manifold W* tangent to the xo-axis at the origin.

e Ifa <0, then there is a unique stable manifold W* tangent to the xs-azis at the origin.

Although, in general, center manifolds are not unique, any choice of center manifold can locally
be described as a graph of a function, i.e. by the equation x5 = h(z1). Since the center manifold is a

solution of (71) we have that h satisfies:

dzz _ Oh dy
dt  Oxp dt
h
axs + fo(x1,x2) = aTclfl(:El,m)
oh

ah + fo(z1,h(z1)) = f1(z1, h(z1)).

dxy

Since we do not posses any further information on f1, fo, it suffices for now to know that h = (’)(x%)
as x1 — 0 since the center manifold is tangent to the xi-axis. What is rather important though is
to know if the center manifold attracts or repels nearby orbits. For this purpose the y = x9 — h(z1)
describe the distance of an arbitrary solution to the center manifold. It follows that y satisfies:

% o dmg 6h d$1

dt  dt Oz dt

h
= axy + fa(x1,22) — 8Tclf1($1’$2)

oh
=a(y+h) + folz1,y +h) — 871f1(331,y +h)

oh
~ ay +ah + fa(x1,h) — — fi(z1,h) + O(z1)y

81‘1
= (a+ O(z1))y,

for 1 ~ 0. It follows that the center manifold is attracting or repelling if a < 0 or a > 0 respectively.
Moreover, to have a qualitative understanding of the dynamics near the origin, it suffices to know
the dynamics on the center manifold (because the other direction is hyperbolic and we know that
depending on the sign of a the center manifold is attracting or repelling). So, the dynamics restricted

to the center manifold are given by

(72) i1 = fi(z1,h(z1)) = ez + O(z?),
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1 2
where ¢ = 2881;1(0) (recall that fi(x1,z2) = O(]|z||*) and h = O(x?)). Tt follows then that the flow
21

on the center manifold is as shown in figure 4.

WS

FIGURE 4. Local phase portrait at a saddle-node singularity. In this case the flow on
the center manifold approaches the equilibrium point form one side, and goes away
from from the equilibrium on the other side.

DEFINITION V.11. Consider the planar system

dx
_—= €T
dt ( )7
with z € R%. Assume that z* is a nonhyperbolic equilibrium point and that the linearization of f at

z* has eigenvalues 0 and a # 0, and that (72) satisfies ¢ # 0. Then z* is an elementary saddle-node.

The saddle-node bifurcation receives several other names, among which we mention: fold bifur-

cation, tangent bifurcation, limit point, and turning point.

Next, we would like to understand what are the effects of small perturbations to (71). For this,
91(21, 22, A)

let us consider a vector field Gy (z1,x2) = G(x1,x2,\) =
g2(z1, 22, \)

] , such that

g1(z1,22,0) = fi(z1,22)
g2(z1, x2,0) = axg + fo(z1,22).

In this situation it is convenient to look at the “extended” system

dx
ditl = gi1(x1, 2, \)
dx
(73) d7t2 = go(x1, T2, \)
dA
20
dt ’

where we consider A as a “dummy” or trivial variable. Of course (73) coincides with (71) when A = 0.

The origin (z1,x2,A) = (0,0,0) is nonhyperbolic, and the linearization is given by the matrix

0 0 =
A:

)

0 a =«
0 0 O
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and thus the eigenvalues are {0,a,0}. The center manifold theorem tells us that there is a 2-
dimensional invariant (center) manifold, which is attracting if @ < 0 and repelling if a > 0. Locally,
such a manifold can be described by the equation x93 = h(x1, ). The dynamics restricted to the center

manifold are given by

dx
ditl = 91(51317 h(.’El, >\>7 )‘) = G(.’L’l, A)?
where we know, from the case A = 0 studied previously, that G satisfies:
oG 0’°G
G(0,0) =0 —(0,0) =0 —(0,0) =2
( ? ) ? 8x1( ? ) Y 81’% ( ) ) C?

and we recall that ¢ # 0. The above properties tell us that the graph of G(z1,0) is locally a parabola
tangent to the zj-axis at the origin. Therefore, the graph of G(x, \) = G(x,0) + O()) is still locally

a parabola, but can have zero, one, or two intersection points with the zj-axis for A small.

Indeed, let L(z1,A) = gg(xl,xg). Since L(0,0) = 0 and aafl = 2c # 0, it follows from the
implicit function theorem that L(z1,\) = 0 has locally a unique solution given by the graph of a
function x; = o(\) with ¢(0) = 0, i.e. L(o(\), A) = 0 for sufficiently small A\. Consider next a function
K(y,\) = G(y + o(\),A). For y small, the function K is a small shift of the function G. Moreover,

for y close to 0 we can use Taylor’s formula to write:

oG 19°G
= G(0(N),\) + L(a(\), Ny + cy® + O(y*, \) + O(y°, A)
= G(0(N),\) +y(c+ Ry, N))
0K
7(y7 )‘) - y<2C + RQ(:% )\))7
Y
G(o(N), A K(0, A
where the functions Ry and Rs vanish at the origin. Let H(\) = (U(C )N = (07 ) . We then have
that H(0) = 0 and if (y, \) are sufficiently small so that |R;(y, \)| < g, the following relation holds:
2 K A 2
o)+ L < KON gy 3
2 c 2
This immediately implies that if H()\) is positive, negative, or zero, the function K has zero, one,

or two intersection points with the xj-axis for A sufficiently small.

ExaMPLE V.4. We provide three examples:
(1) Let G(x1,\) = A + 2%, This is the case, for example, for the system

d
de*—{B +
a 7

In this case, for (z1,x2) near the origin and A ~ 0, G = 0 has two roots for A < 0
and no roots for A > 0. Consequently, (74) has two equilibria (21, z3) = (v/—\, 0) for
A < 0 and no equilibria for A > 0.

This is the generic case, and is known as the saddle-node bifurcation. See a sketch

of the corresponding dynamics in figure 5.
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FIGURE 5. Phase portraits of (74) for A < 0, A =0, and A > 0 from left to right.
These sketches represent the unfolding of a saddle-node singularity, where for
A < 0 (left) there is a saddle and a node, for A = 0 (middle) the two singularities
collide, and for A > 0 (right) the equilibria have disappeared.

(2) Let G(x1,\) = —A? + 2%, This is the case, for example, for the system

da:l

Lo Nadt
dxg +

— = — “ e

dt 2

In this case, there are always two equilibria (27, 23) = (£A,0) for all A # 0. Notice
though that the stability of the equilibria change depending on the sign of A. This can
be seen from the Jacobian evaluated at the equilibrium points

A 0
0 -1

J

This bifurcation is known as the transcritical bifurcation.

EXERCISE V.9. Sketch the phase portraits for A < 0, A =0, and A > 0 for this

example.

(3) Let G(z1,\) = —Azy + 2%, This is the case, for example, for the system

d:L'1

d:L'2 i
—_ = —I ..
dt 2

EXERCISE V.10. Show that this is also a transcritical bifurcation by drawing the

corresponding phase portrait and comparing with the previous item.

The last two examples are not generic (they are tangent to &;. This means that small ct

perturbations break the bifurcation generating, usually, a pair of saddle-node bifurcations).

69
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EXERCISE V.11. Consider a perturbation of the transcritical model

dxl
dez _ _,
dt — 2,

and show qualitatively that there are, indeed, a couple of saddle-node bifurcations.

We conclude this section by mentioning that, through our previous analysis, one concludes that
the singularity (71) admits the local unfolding

dzy = \+ 27
dza _ __
a

Although we do not provide a formal proof of our claim, it suffices to have the idea that every
other unfolding of (71) is topologically equivalent to (75). Precise definitions of unfoldings and related
topics are the subject of the course Singularity Theory.

V.1.2. Hopf bifurcation. In the previous section we considered a planar system for which the
linearization has a simple zero eigenvalue at the nonhyperbolic equilibrium point. Now we consider
the case where the nonhyperbolic equilibrium point is elliptic, i.e., it has a pair of purely imaginary
eigenvalues with strictly nonzero imaginary part. In appropriate coordinates we can thus write:

d

% = —axa + fi(x1,x2)
d

% = ax1 + fa(z1,22),

where, as before, fi and fo, as well as their derivatives, vanish at the origin.
To proceed with the analysis, let us introduce complex coordinates z = x1 4 1x2. Thus:
dz dz d
de_dzy  dwp
dt dt dt
= —axz + fi(z1, 22) + 11 +1fa(z1, 22)
=az + F(z,2).
Next, we will attempt to simplify the function F' via the normal form procedure. For this, it is
worth noting that, due to the properties of f; and of fs, such functions have the local expansion

fileras) ~ Y gty + O(|lz]!)

2<u+v<3

falar,az) ~ Y Burtes +O(||z|]*),

2<u+v<3
where oy, and (,, are some real coefficients. This implies that we can analogously write:

F(Z7 2) ~ Z Fuw2"Z" + O(|Z|4)a

2<u+v<3

for some complex coefficients F,,,,. For shortness of notation let F}, = Z F,,z"z".
utv=~k
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Our goal now is to eliminate some of the higher order terms that appear in F' through some
convenient changes of coordinates. Let ha = ha(z,Z) be a homogeneous polynomial of degree 2, and

define the variable w = z + hy. It follows that
dz Ohodz  Ohodz

dw e
dat 9z dt '~ 0z dt
Ohy Oha R
=z + F(z,2)— P (mz + F(z,2)) + E(—zaz + F(z,2))
0

Oho  _Oho . Oho _ ha -,
=1z +1a (Zaz— az> +F(Z,Z)+5F(Z,Z)+¥F(Z,Z)

Ohs  _0Oho Ohs Oho -, _
zaz+za<zaz— 8z>+F2ZZ kéngzz +8—F( z) + EF(Z’Z)'

degree > 3

Suppose that hg satisfies:
43

0z 0z
Then, by substituting he, we could eliminate the quadratic terms in Fb, and only be left with the
leading part and higher order terms of degree at least 3. In other words, we would further simplify to

(hg — Zah2 ah2> = FQ(Z,?).

dw _ 8h2 _ 8h2 = _
— =aw + ZFk(z,z) + EF('Z?Z) + EF(Z’Z) :

degree > 3

The above procedure can, in fact, be done iteratively, as we now describe. Let

h=h(z,z) Z hywz"Z _tha

2<u—+v 2<k

where k = v + v. It follows that
oh
Z— = Z Uhyy 2" Z°

0z
2<u+v
oh
Z— = E Vhyz' 2.
0z
2<u+v

Let w = z + h (such a transformation is called “near identity transformation”), then

dw dz + Ohdz  Ohdz
dt 9z dt ' 0z dt
w— oh Oh oh oh -,
=1az + Z Fuwz"Z" 4+1a (Zaz _Zaz> a—F(z Z) + 8zF(Z’Z)
2<u+v
) oh oW\ oh oh
=aw + Z Fupz"z" +1a h+zaz e + 8zF( Z)+ azF(z,z)
2<u+v
w oh . Oh_.
Z (=14 u—v)hyw2"z —|—£F(z,z)+£F(z,z).

= aw + E Fp2'z" +1a
2<u+v

2<u+v
Here we notice that, for each pair (u,v), we can eliminate (by an appropriate choice of hy,) the

as long as the nonresonance condition

monomials 2%z
v#Eu—1,
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is satisfied. At degree 2, there are no resonances, thus we can completely eliminate the terms for which
u + v = 2. Indeed, the quadratic terms can be eliminated by choosing

1
hao = —Fb, hi1 = Fiu, ho2 = §F02-

At degree three the pair (2, 1) is resonant. This means that the monomial 2?7 cannot be eliminated,
at least with the coordinate transformation we have proposed. A similar argument follows at every
degree.

Notice 2°Z = |z|?z. Thus (76) can be reduced to:

dw
(77) = lew + bor|w[*w + O(Jw|?),
where the coefficient bo; depends on the coefficients F,,.
Let us now rewrite (77) in polar coordinates by employing w = r exp(26). Thus:

dw dr dé
O @ exp(0) + U exp(20)
3 4 dr dé
war exp(18) + ba1r” exp(e0) + O(r*) = n exp(:0) + Un exp(20),
which leads to
g = §R(b21)’l“3 + O(T4),
dt
(78) By
ik + (b1 )72 + O(r3).

Similar to what we did for the saddle-node singularity, we have the following definition:

DEFINITION V.12. Consider the planar system
dz
E - f(x)a
and assume that z* is a nonhyperbolic equilibrium point and that the linearization of f at z* has a
pair of purely imaginary eigenvalues +ua with a # 0. If the normal form (78) satisfies (ba1) # 0 then

x" is called an elementary focus.

Analogous to the saddle-node, we now consider perturbations of the elementary focus. We are
thus interested on a family of vector fields, depending on one parameter A, such that for A = 0 we have
an elementary focus. It then makes sense to consider that the linear part of the family has eigenvalues
a(X) £18(A) such that a(0) = 0 and 3(0) = a # 0. A representative of a family with such properties
is:

dxq
dt
dzo
dt

= a(N)z1 — B(N)z2 + g1(21, 79, \)

= 6()\)561 + Oé()\).’L'Q + 92(w17x27 )‘)

The normal form
dr
dt
de
dt
can be obtained in an analogous way as above. This unfolding, provided with the non-degeneracy
condition R(b21(A)) # 0, is known as the Hopf bifurcation.

= a(A)r + R(baar(N)r® + - -

= BN) + Sl (M) +--- .
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ExAMPLE V.5. Consider

% =X+
(79) o
a -~ "

which are truncated forms of the supercritical (—) and of the subcritical (4+) Hopf bifurcation.

For the supercritical case, the equation (Ar — r®) = 0 has solutions » = 0 and r = £V/\.
Therefore, for A < 0 the trajectories spiral toward r = 0, while for A > 0 the trajectories spiral
towards a limit cycle of radius V' (notice that r* = V/X is attracting for A > 0). See a sketch
in figure 6.

—_
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FIGURE 6. Phase portrait, in cartesian coordinates, for the supercritical Hopf
bifurcation for A < 0 on the left and A > 0 on the right. For this sketch we have
chosen a > 0, and changing its sign changes the direction of the rotations as can
be seen from (79).
For the subcritical case, the equation (Ar 4 %) = 0 has solutions r = 0 and r = +£v -\
Therefore, for A > 0 the trajectories spiral away from r = 0, while for A < 0 there is an unstable

limit cycle of radius VA (notice that r* = v/ —\ is repelling for A < 0). See a sketch in figure 7.
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FIGURE 7. Phase portrait, in cartesian coordinates, for the subcritical Hopf
bifurcation for A < 0 on the left and A > 0 on the right. For this sketch we have
chosen a > 0, and changing its sign changes the direction of the rotations as can
be seen from (79).

V.2. Some extra comments

The following comments are provided (without proof) to put the contents of the previous section
in a larger context.
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e If in a saddle-node bifurcation, the unstable manifold of the saddle makes a loop and connects
with the stable manifold of the node, the as the equilibria collide, a periodic orbit arises. This

is a result due to Andronov, Leontovich and Shilnikov, and is depicted in figure 8.

FIGURE 8. A saddle node bifurcation when the center manifold (middle) forms a loop.

e Just as equilibria can present saddle-node bifurcations, periodic orbits can also undergo such
a bifurcation. Essentially, two hyperbolic periodic orbits, one of saddle type and one of node
type, collide and disappear as the bifurcation ensues. Equivalently, a periodic orbit v can be
seen as a fixed point z* of a Poincar’e map II with section transverse to the periodic orbit. If
the eigenvalue of DII(x*) is exactly 1, then the periodic orbit 7 (equivalently the fixed point
x*) is non-hyperbolic. Small perturbations of the latter situation create either two fixed
points (one saddle and one node) or a regular flow. Generic unfoldings of the saddle-node

singularity for periodic orbits are sketched in figure 9.

FIGURE 9. Sketch of a saddle-node bifurcation of periodic orbits.

e One should emphasize that the saddle-node bifurcation is robust because of the presence of
a node. The situation is completely different when two saddles interact. Regarding saddle
connections, one can consider what happens when a heteroclinic connection or a homoclinic
loop is perturbed. Sketches of such situations are depicted in figure 10. In this context, [14]

contains a recent account of important results.



} Lo LQ}JL
NG e

>x©) <& O

F1cURE 10. Above: perturbation of a heteroclinic connection. Below: perturbation of
a homoclinic connection.

e The classification of singularities of higher codimension (generic for higher dimensional fam-

(2)

ilies) or in higher dimensions (greater than two) is considerably more complicated and even
incomplete. For example in the plane, codimension 2 singularities include the pitchfork and
the Bogdanov-Takens singularities. In higher dimensions, say 3, the situation can be much
more subtle. To start, a result analogous to the Poincaré-Bendixson theorem does not exist.
More importantly, however, is that structurally stable vector fields are not “typical” in higher
dimensions, which indicates that vector fields in higher dimensions can be very complicated.
Here, by typical, we mean that structurally stable vector fields are not dense in the space of

vector fields (in higher dimensions).

V.3. Further exercises for this chapter

For the following scalar equations, find all the equilibrium points and sketch the phase-portrait
by determining the local stability of the equilibrium points. (Note: it may not be possible to
explicitly find the equilibrium points, in that case, make a sketch of their relative position,

and describe the qualitative behavior in a neighborhood of the equilibrium point(s)).

(a) i—f =32 -9

(b) i—f =1+ %cosx

(c) ((ii—f = exp(—x)sinx
(d) ((ii—:tv = exp(z) — cosz

For the following scalar equations, sketch the qualitative behavior of the vector field as the
parameter X is varied. Find the value A\ = A" at which a bifurcation occurs, which type of

bifurcation is it?

d
(a) d—le—I—)\x—i-:L‘Q
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(b) s =\ —coshz
dz. 9

(c) s =N+
dx

(@) 52 = (1~ exp(a)
dx
= 43

(e) 5 Ar + 4x

(3) (A preamble to normal forms) Consider the scalar equation

de _ ax — 22 + ba® + O(z?),

dt

where a and b are arbitrary constants with a # 0. Our goal is to find a near identity trans-
formation y = x + h(z) that eliminates the cubic term. Let y = z + cz3 + O(z*), where ¢
is a constant. Write the system in the new coordinate y and choose ¢ so that in the new
equation, the cubic term disappears. Does this procedure work for even higher order terms?

that is, to eliminate monomials of the form z* with k > 3?

Hint: the transformation y = z + cz® + O(z?) can be inverted as = = y + dy® + O(y?),
where d is some constant. What is the value of d?

(4) Although we have mainly seen vector fields on R and RR?, this exercise explores vector fields

on the circle. In these exercises § € S', that is, you may assume that 6 € [0,27). and identify

0 with 27. Find equilibrium points and sketch the corresponding phase portrait (on the unit

circle).
dé
o142
(a) i + 2cosf
do .
(b) i sin(k@), where k € N.

(5) Consider the linear planar system

dﬁ—abx
dt e d

What are the conditions for the entries of the matrix A to guarantee that there is a
unique hyperbolic equilibrium point at the origin? Classify the hyperbolic equilibrium point

according to values of the elements of A.

dﬁ_Aa
dt |0 |’

where A # 0 and a # 0. Assume A < 0. What is the corresponding stable eigenspace? Sketch

(6) Consider the linear system

the corresponding phase-portrait.

(7) Which of the following systems is structurally stable? Why?

r =x—2y
(a) § .
y = —3x+ 6y
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r =3x+vy
(b)

y =-z

T =x+2y
ORY

y =Ty

(8) Prove that the systems

dx1 .

a M
d.%’g .
a7

and

dl‘l _

a "
% = *2562

are topologically equivalent. Are they smoothly equivalent?
(9) (Gradient systems can’t have periodic orbits) Consider a differential equation in the plane
given by
dx

where V : R? — R is a smooth function. These type of systems are known as gradient sys-

tems. Show that such gradient systems cannot present periodic orbits.

Hint: proceed by contradiction. Assume that the system has a T-periodic orbit v and

T
consider the variation of V' in one period. That is evaluate / ——dt. Such variation should
0

be zero along ~, is that possible? Did any of the arguments depend on the dimension of x?
(10) Consider the planar systems

dl‘l
dt
dl‘Q
dt

=\ + a2

= —(L‘2

and
dyy
dt
dy B
O —Y2.

The first one is the truncated form of a saddle-node bifurcation. For the second one, is there a

=01+ 09 +y%

transformation y; +— y1+h(y1, 02) that eliminates the term o9y ? If the answer is affirmative,
can you say something about the qualitative behavior of the second system given that you
already know the behavior of the first one?
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(11) Show that the system
dx

dy 3
_— = A
1 T+ AY+y°,

undergoes a Hopf bifurcation at the origin as A varies. What is the type of the bifurcation
(sub / super critical)?
(12) Consider the system

— = —x9 — 1129 + 2z
dt 2 142 2
— =T — TiT2.
dt 1 142

Similar to what we did in the analysis of the Hopf bifurcation, introduce a complex
variable z = x1 4+ 19 and obtain the corresponding differential equation. Obtain a truncated
normal form up to the first non-zero coefficient. For such a truncated form, determine the
stability of the origin.



CHAPTER VI

Regular Perturbation Theory

In this chapter we shall consider perturbation problems of the form:

(80) i—f = f(z) +eg(x,t,¢),
where z € R", f and g are of class C" with » > 1, ¢ is a small parameter and ¢ is bounded and
T-periodic in t.

The main question we are interested in addressing is: if 2" is a stable equilibrium point of the
unperturbed problem, does the perturbed problem have a stable T-periodic solution in a neighborhood

of "7 Let us first formalize what we mean by a stable periodic orbit.

DEFINITION VI.1. A periodic solution (t) of (80) is stable if for every § > 0 there exists a u > 0
such that if ||z(0) — v(0)|| < u, then ||x(t) — v(¢)|| < 0 for all ¢ > 0.

PROPOSITION VI.1. Let x* be a hyperbolic equilibrium point of the unperturbed problem, that is
(80) with e = 0. Then, the perturbed problem (80) has a stable periodic solution for e > 0 sufficiently
small if and only if x* is stable.

PrOOF. Without loss of generality we assume that 2 = 0 € R". Let A = D, f(0), which by
hypothesis is hyperbolic. Denote by ¢; . the flow induced by the perturbed problem.
Notice that the map ¢ can be regarded as a Poincaré map on the extended space {(z,t) € R" x R}

with Poincaré section {t = 0}. Since the perturbed problem is T-periodic, we can in fact identify the
planes {t = 0} and {t =T'}.

Since ¢p0 @ « — exp(At)z, we notice that agt’o (0) = exp(At). Let us define the function & =
x
O(z,¢e) by ® = ¢ — x. Thus, the function ¢ satisfies
$(0,0) =0
and
d
2 (0.0) = exp(AT) ~ 1.

where [ is the identity matrix in R™. Notice now that the existence of a periodic solution for &

sufficiently small is given by the solution of ®(x,e) = 0. Next, since A is hyperbolic, all the eigenvalues

of exp(AT') have modulus different from 1, which in turn means that — (0, 0) has no zero eigenvalues.
The implicit function theorem tells us that there is a unique solution of ® = 0 for € > 0 sufficiently
small. In other words there is a function & = #(e) such that ¢7.(2) = 2, with £(0) = 0, for € > 0
sufficiently small. This means that the Poincaré map ¢r. has a fixed point & for ¢ > 0 sufficiently
small. Such a fixed point corresponds precisely with the periodic orbit A of the perturbed problem.
8¢T,e ~

(Z) has

all its eigenvalues within the unit circle. Since the eigenvalues of 1-parameter families of matrices

Next, regarding stability, we recall that the map ¢7. is a contraction if and only if

0
depend continuously on the parameter, it follows that if € > 0 is sufficiently small and gT’O (0) has
x

79
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0
all its eigenvalues within the unit circle, then %(:ﬁ) has all its eigenvalues within the unit circle.
x
0
Thus, it suffices to look at the eigenvalues of gT’O (0) = exp(AT'). Such eigenvalues are within the
x

unite circle if and only if A has all its eigenvalues with negative real part.

The above arguments immediately imply that, within a small neighborhood of + it holds that
|z (t) — ()| < ¢l||z(0) —~(0)|| for some constant ¢ > 0 and all t = kKT, k € N, if and only if A has all
its eigenvalues with negative real part. It now rests to show that ||z(¢) —~(¢)|| is small for all ¢ € (0,T)

d
(and thus for all ¢ > 0). Let, for simplicity, y(¢t) = x(t) — v(¢). Then d—z = fly+v) — fly) +eG(t),
where G(t) is some bounded function. It follows that:

y(t) = y(0) + / F(s) T () — Flv(s))]ds + / G(s)ds
0 0
ly®) < lyO)]] + /0 £ (0(s) +1(s)) — F(3(s))lds + e /0 1G(s)]|ds

< [ly(0)]] + /0 Llly(s)|[ds + eMt

< Iyl exp(Lt) + P (exp(Le) — 1) < [[y(O)l| xp(LT) + 1 (exp(LT) ~ 1),

where L is a local Lipschitz constant, for the last line we have used Gronwall’s inequality. (I

Although the above description is of high importance, we are mostly interested in perturbations
of systems that have a nonhyperbolic equilibrium point. Due to their importance, we will study such

problems in the context of Hamiltonian Systems.

VI.1. Basics of Hamiltonian systems

In this section we briefly present some basic terminology regarding Hamiltonian systems. Most of
the results contained here are proven in the course Hamiltonian Mechanics. The perturbation
results we shall cover are the basic ones, and much development exists in the field. A good

starting point is [1].

Let H : R*™ x R — R be a sufficiently smooth function (R®*" can be replaced by an open subset
of R?™ or a 2n-dimensional smooth manifold). We call n the number of degrees of freedom, and H
the Hamiltonian (or Hamiltonian function). Local coordinates on (a subset of) R"™ are denoted by
(¢,p) = (q1,--+,qn,P1,---,Pn). The (canonical) equations of motion associated with the Hamiltonian
H are defined by

dg; _ 0H

dt N api
(81) a0

dt N 86]2' )

ExXAMPLE VI.1. One of the simplest examples of Hamiltonian systems are given by the Hamil-

tonian

1
H= §||PH2 +V(g),
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with corresponding equation

dg N

ar pi

dpi _ 9V(q)
dt 8qi ’

which may remind you of (some) mechanical systems and thus H is the “total energy” of the
system (with (p; = m;v;)).

Notice that (81) can be written as

dg;
dt:OIVH,
dpi] |10
dt

where I is the n-dimensional identity matrix. Such a skew-symmetric characteristic of the equations

of motion is called “symplectic structure” and leads to some important properties of Hamiltonian
systems.

PROPOSITION VI.2. The following are satisfied by a Hamiltonian system (81).

(1) H is a constant of motion.

(2) The flow of the Hamiltonian equations of motion preserves the volume form
dgdp = dgqi - - - dgndp1 - - - dpy,.

(8) A curve y : t — R®™ given by v(t) = {(q(t),p(t)) : to <t < t1} is a solution of (81) if and
only if the integral

t dq(t
[ aa=mar= [ (o0 47~ #0000 )
o to
is stationary with respect to variations of v with fized end points. (This is called Hamilton’s

invariance principle)

EXERCISE VI.1. Prove the previous proposition. Hints:

dH
(1) Compute

E(q,p), and show that it is equal to zero.

(2) Let M(0) be a compact subset in R*™ and denote by M (t) the image of M(0) under the

flow ¢¢ of the Hamiltonian system. Consider the extended system

dg _ ot
dt  9p
dp _ _0H
dt  0q
dt

— = 1.
dt

Denote the extended vector field by f = f(q,p,t), and define the cylinder
C:{(M(s),s)eRQ"xR 1 0<s<t}.
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Compute

[ asan- [ dgdp= [(vaaapar
M(t) M(0) c

and show that it is equal to zero. You may want to use Gauss’ divergence theorem.

(8) Let 6(t) = {(§(t),77(t)) eER™ : tg<t< tl} be a curve such that 6(tg) = d(t1) = 0.

Using the notation S(v) = /(p -dg — H)dt we have
g

t/ dq d¢ dg =, d¢
S 5) = = _H dt.
(v +¢€d) /to ( dt+ epg ndt+6 Uy (q+6§,p+677)>

d
Compute £S(Py + €)|e=0 and show that it vanishes if and only if v(t) = (q(t),p(t))

d
satisfies the Hamiltonian equations of motion. (You need to integrate /pdfdt by
parts and recall that € = 0 at the end points).

The following definition plays a central role in the study of Hamiltonian systems.

DEFINITION VI.2. Let f = f(q,p) and g = g(q,p) be two differantiable functions. The Poisson
bracket of f and g is defined as

of dg  Of Oq
Uhgh = Z dq; Opi  Op; Og;”

The Poisson bracket satisfies the followmg properties:

(1) it is anti-symmetric, i.e., {g, f} = —{f, 9},

(2) it is bi-linear, i.e., {af + Bg,h} = a{f,h} + B{g,h} and {f,ag + Bh} = a{f,g9} + B{f, h}
for any constants a, 8 € R,

(3) satisfies the Jacobi identity, i.e., {{f,g},h} + {{h, f}.,9} + {{g,h}, f} = 0.

(4) satisfies the Leibnitz rule, i.e., {fg,h} = g{f, h} + f{g,h}.

Notice that, in particular,

af dqz of dpi
Z Oq; dt api dt £, H}.

dH
Thus, it is evident that Fr {H,H} =0.

DEFINITION VL.3. A function F' = F(p,q) is a constant of motion (or a first integral) if and only
if {F,H} =0.

Therefore, H is always a constant of motion. It is not difficult to check that if F' and G are two
constants of motion, then {F, G} is also a constant of motion.

From the above arguments, it follows that the solutions of (81) belong to the invariant sets
H =constant. Depending on the dimension of the problem, the motion on such invariant sets may be
very complicated. However, as a general rule, the more constants of motion one knows, the easier the
analysis may become because one is able to find smaller invariant manifolds where the trajectories
evolve.

As we have seen already, changes of coordinates usually allow us to simplify the analysis of a

problem. In the context of Hamiltonian systems, one would like to use changes of coordinates that
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preserve the symplectic structure of the equations of motion. Transformations that preserve such a

symplectic structure are called canonical transformations.

PROPOSITION VIL.3. Given a canonical transformation (q,p) — (Q, P), the new equations of mo-

tion are
dQ; 0K
dt 0P
drp 0K
At~ 0Q;’

where K = K(Q, P) is the (new) Hamiltonian expressed in the new variables (Q, P).

ExamMpPLE VI.2.

e Let Q = q+ a and P = p+ b, where a,b are constant vectors. It is straightforward to

check that this is a canonical transformation.

e Let @ = ¢+ f(p) and P = p. Then, H(q,p) = H(Q — f(p),p) = H(Q — f(P),P) =
o _OK ' OH _0K0f oK

dg  0Q dp  0Q dp OP’

K(Q, P), and using the chain rule we have Since

dQ OH 9foH _ dP  OH

T 671) — aip(?iq an Fri —a—q we indeed have that in the new coordinates
d@;
de ) 10 Hgg
dp; —I 0
dt
0 I
o Let [g — Al , where AJAT = J with J = [ ol For simplicity let X = (Q, P)
D _
dX d
and @ = (q,p). Then — = Adéi = AJVH(z) = ATATVH(X) = JVH ().

A matrix A satisfying AJA" = J. This example shows that any (linear) symplectic

transformation is a canonical transformation.

A useful approach to obtain canonical transformations is via generating functions. A generating

function is a smooth function G = G(q, @) (there are other types of generating functions, which shall

0%G
9000 # 0. We define the new

not be discussed here) satisfying the non-degeneracy condition det

coordinate P implicitly by the relations

p(q,Q) = gf;(q, Q)
(82) Py

0G
Due to the non-degeneracy condition, the equation p = —(¢,Q) can be “inverted” to obtain

dq
Q = Q(q,p), that is, the new variable @ is a function of the “old” variables (¢,p)!. Therefore, (82)
indeed defines (implicitly) a transformation (¢, p) — (@, P).

1Recall the inverse function theorem: Let f:R™ = R™ be C* on some open set around a point z*, and suppose that
det D, f(x™) # 0. Then, there is an open set U containing * and an open set V containing f(z") such that f: U — V
has a continuous inverse f~' : V — U, which is differentiable for all y € V.
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ExaMpPLE VI.3. Suppose G = ¢Q). Thus p = QQ and P = —q. Thus this generating function
defines the canonical transformation (g, p) — (p, —q).

The usefulness of canonical transformations is better witnessed in a general example.

ExAMPLE VI.4. Consider a 1-DOF Hamiltonian system, i.e. (¢,p) € R? and H : R* — R.
As mentioned before, since H is a constant of motion, the solutions of the equations of motion
evolve in level sets given by H =constant. In this case, the level sets are 1-dimensional. Thus, in
fact, the orbits themselves are given by the level sets of H. For the analysis, it would be greatly
convenient if one could find new coordinates where one of them is constant along each invariant
level set. Such coordinates are called action-angle variables. We thus proceed to construct a
canonical transformation that allows us to obtain action-angle variables.

Let us assume that each level curve v, = {(q, p) € R?: H (q,p) = h} is bounded. We define the
action of the level curve as

1
I(h) = 277/ pdq.
2

dI
Further assuming that — # 0, we can write the inverse of the action, i.e. h = h(I). Suppose
that p(h,q) is a solution of H(q,p) = h. Then, we can define the generating function
q
G(Ta) = [ p((D).0)d:
%

Thus, we define the (canonical) transformation (q,p) — (I, ¢) implicitly by

oG
I,q)=—
pilha) =5
oG
I,q)=—.
To see that ¢ is indeed an angle, we can consider its variation during one whole period, i.e.:
ng 0 (0G 0 0
Agp = — dg = dg = —(2nl) = 2.
°=] o /%aq<af>q 8I/pq gr(2rl) =2

That is ¢ — 27 as ¢ — qo along an orbit. The Hamiltonian in the action-angle variables takes

now the form

K((ZS?I) = h‘(I)7
and the equations of motion are

d¢ K  h(I)

a oI I
I~ 0K o
dt ~ 9o

1
To fix ideas, consider a harmonic oscillator with H(q,p) = i(p2 +¢*). Each level curve {H = h}

is a circle satisfying ¢> + p*> = 2h, thus on each level curve p = +1/2h — ¢2.
The action variable thus reads as
1

I = —
o pdq b,
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where used the simple fact that / pdq is the area of a circle of radius v2h. We see, therefore,

that the action variable is constant (in this case equal to h).
As for the angle variable, we can take ¢ = 6 so that the variables (I, ¢) are defined by

q(1,0) = V21 sin @
p(I,0) = V2I cosb.
Indeed, just by definition one has:
q 0 o
G(I,q) = / V2h — ¢?dg = 2[/ cos?0df = I( — sinf cos 6).
q0 0
Therefore

ol 21 cos @

The Hamiltonian in the action-angle variables is therefore K = K (¢, 1) = I, and the equations
of motion now read as

¢ = (?5 :0+sin90050+[(1+cos29—sin29)@ = 0 +sin 6 cos § + 21 cos® 0 (_lsmG) =0

do
1
de¢
dl
E—O.

In the previous example we took advantage of the fact that the Hamiltonian is always a conserved

quantity. In higher dimensions, it is not always true that there are more conserved quantities.

DEFINITION VI.4. A Hamiltonian system with n degrees of freedom is integrable, if it has n
conserved quantities H = Ji, Jo, ..., J, such that the following are satisfied:

° {Ji7 Jj} =0 for all (i,j),
e let h = (hy,...,h,) and define M) = {(q,p) eR™ : Ji(q,p) =hi,i=1,... ,n}; the gradi-
ents of J; are linearly independent for every point in Mj,.

Functions satisfying the above definition are said to be in involution.

THEOREM VI.1 (Liouville-Arnold). If a Hamiltonian system is integrable such that My, is compact
and connected, then My, is diffeomorphic to an n-dimensional torus T" = S* x --- x St. Moreover,
there exist action-angle coordinates (¢p1,...,¢n,I1,...,I,) € T" x R™ and frequencies wy, . ..,wy such

that the equations of motion are given by

do; o
e
dr;

=0
dt ’

and thus the corresponding solutions are simply given by
¢i(t) = wit + ¢i(0)
I;(t) = 1;(0).
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ExaMPLE VL5. Let n = 1 and assume that H(q,p) = H(q¢ + 1,p). As a (not so particular)

example we can take

1

where V(g + 1) = V(q). For any level set {H = h}, we have p = £+4/2(h —V(q)) # 0. The

corresponding phase-space is the cylinder C' = T x R, and so each trajectory wraps around the

cylinder. For any point (q,p) € C, the action variable is defined as the integral

1
I:/ pdg,
0

where the integral is taken along the level curve passing through (g, p). The angle variable 6 is

defined by
ezl/q(msz;cpdq
TJo p folpdq
Since the motion of integrable systems is “relatively simple”, we now study perturbations of

integrable systems.
Let us consider a Hamiltonian of the form

H(¢,1,e) = Ho(I) +cHi(I, ,¢),

where the system defined by Hj is integrable. The associated equations of motion are
d¢; 0Hp 0H,
(83) dt ol; ol;
di; O0H1
— = —¢ .
dt 0p;
Notice that (83) is of the form (81) but time-independent. There are some particular cases where
we can indeed reformulate (83) as a periodic perturbation. We describe a few examples of such cases:

OH, OH
Case 1: Assume that 8TO # 0 for all I € R™ and that 3 Il is bounded. Then, for e sufficiently
1 1
small, ¢1 is monotonous in ¢. Thus, one can “replace” t by ¢ obtaining then
OH, OH
do; a1, tEar
OH, ’

= BH,
dt on, T €an

ji=2,....n

which is a system of 2n — 1 equations. Notice that this is a time-varying system, which indeed

is periodic in ¢; because ¢; is an angle.
Case 2: Assume now that v(t) = (q(t),p(t)) is a T-periodic solution of a (not necessarily integrable)

Hamiltonian system. Let y(t) = z(¢t) —(t), where z(¢) = (¢q(¢),p(t)). Using Taylor expansion
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we know that y satisfies

0*°H 0’H
dy 0qOp op?
-9 _ t
g” 2H  02H y+g(ty),
0q? dpdq/ |,
At)

where g € O(||y||?) for ||y|| small. Let U(t) be the solution of % = A(t)U with U(0) the
2n x 2n identity matrix. Since A(t) is T-periodic, there is a T-periodic matrix P(¢) and a
constant matrix B such that? U(t) = P(t)exp(tB). Therefore, P satisfies the differential
equation

dpP
— = A(t)P — PB.
5 =A@
Let z(t) be defined by the change of coordinates y = P(t)z. Then
dz

i Bz — P Y4(t, Pz).

Finally, let 2z = ew with € > 0 sufficiently small. Notice that for € small, the variable w
is a “zoom-in” into y ~ 0, or equivalently x ~ ~. The corresponding differential equation in

w now reads as

d
c%] = Bw + eG(t,w,¢),

1
where G = ?P_lg(t, ePw) with G = O(||w?||). Indeed:

1. |
1GII < SIIPHI- |lg(t ePw)l] < SIP7H| - (2 (I1PIP[wll?) < Klwl]?,
3 N—————’ 3
=0(|(ePw)?])

for some positive constant K (the last inequality holds because P is periodic). System (84)
is now of the form (80).

ExaMPLE VI.6. Consider a system of the form

d
d—gtc = Az +eg(t),

g(t) is T-periodic and A = [a,] is diagonal. Then, each component solution is given by

z;(t) = exp(a;t)x;(0) + E/O exp(a;(t —7))gi(T)dr.

Since each g; is periodic, we may assume that the g;’s are given in Fourier series as

2
gi(s) = Zcik’ exp (;zk:.s) .

kEZ

Notice therefore that to compute the solution x(t) we need to solve integrals of the

/O " exp (as(t — 5)) exp <2T7rzks> ds = exp(ast) /0 " exp ((2173;€ _ ai) S) ds.

form

2This is Floquet’s theorem.
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Depending on the eigenvalues a; we have that the integral has solution

exp (%1kt) — exp(a;t)

2
, ifa; # =1k
Q%Zk —a; i 7 T

. o
t exp(a;t), if a; = TZk
So:

e If R(a;) # 0 then the solution z;(t) grows or decreases exponentially (as for
the unperturbed case).

e If R(a;) = 0 then the solution present resonance: if a; is a multiple of 2%2, then
the solutions flow linearly with t. Otherwise, the solution remains bounded,
but the amplitude may be large depending on the denominator Tk — a;. A

similar situation occurs with the secular terms in Example 1II1.8

In the next section we are going to study a perturbation method that allows us to provide estimates

of the perturbed solution on systems where the higher order terms are periodic.

VI1.2. Averaging method

The averaging method is applicable to systems of the form

(85) E = Eg(.T,t,E),

where g is T-periodic in T, C"-smooth and bounded. We will later see how to associate such an
equation to a perturbation problem of the form (80).

DEFINITION VL5. Given (85), the associated autonomous averaged system is defined as

dy 1 /7
(86) Vel /0 oy, t.0)dt.
)

=:g(y

In this context we have:

THEOREM VI.2. Consider (85) and its associated average (86). There exists a C" change of coor-
dinates x = y + ew(y, t,e), where w is T-periodic in t, transforming (85) into
dy

E = gg(y) + 5291 (y’ ta 8)5

where g1 is T-periodic in t. Moreover:
(1) Let x(t) and y(t) be solutions of (85) and of (86) with initial conditions vo = x(0) and
1
yo = y(0) respectively. If ||xo —yol| = O(e), then ||z(t) —y(t)|| = O(e) on a time scale t ~ -
(2) If y* is a hyperbolic equilibrium point of (86), then, for e sufficiently small, the perturbed

system (85) has a unique hyperbolic orbit v. (with the same stability properties as y*) in a
small neighborhood of y*.

PROOF. See [10]. O

Let us now see some examples of the application of the averaging theorem.
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dx
ExAMPLE VI.7. Consider the scalar system T exsin?t. We then have

1 ™
gly) = / ysin® tdt
0

s
_Y
2
In this case we can even compute the change of coordinates:
rT=y+ew
de _ dy 6dw
dt — de dt

. 9 ey dw
€ t=—+e—
x sin 5 &

d
d—qf = —g+ysin2t+(’)(€)

w = —% sin(2t) + O(e).
Therefore, under the coordinate transformation x =y — €1 sin(2t) we obtain:
dx
° (1 _— 1n(2t)) VY cos(2t)

dt¢ 4 — esin(2t)

e <5< ~ ¥ sin(21) + O(2)) @ _ ;cos(Qt)) +5Zcos(2t))

_ (5% + 52 (cos(2t) — 1) sin(2t) + (’)(63)>

(y + ew)sin®t + 2 cos(2t))

— esin( 275
_ (1 te Smft) +O(e )) (<% 422 (cos(2e) — 1)sin(20) + O())
= e% 52ySiilé4t) + O(e?).

See a comparison between the solution of the original equation and the averaged system.
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FicUre 1. Comparison between the original equation and its average. A so-
lution with 2(0) = 1 of the original equation is plotted in blue, while for the
average equation with the same initial condition, the solution is plotted in red.

1
Notice that up to ¢t ~ 10 = —, both solutions are close to each other.
€

In the context of Hamiltonian systems, we are interested almost integrable systems, meaning that
one looks at Hamiltonians of the form

H(I,¢) = Ho(I) + ehi(¢, 1),

where (I, ¢) € R" x T". The corresponding equations of motion are

do; _ 0Hy +€8H1
dt 01; oI,
dI; 0H,
at - ok

The motion prescribed by (87) is described by fast rotations (¢;) with slow drifts (I;) along the

cylinder.

(87)

ExAMPLE VI.8. Let Hy(I) denote the Hamiltonian of an integrable system with two degrees
of freedom (depending only on the action). This kind of Hamiltonians appear, for instance, in
some problems in celestial mechanics. Consider a small perturbation of the form

(88) H(¢1, 2,11, I2,€) = Ho(I1) + eH1(1, 2, I1, I2, €).
For € = 0, the equations of motion are simply
dér _ O
dt — on
deo
2 _0
dt
dl
1 _9
dt
dl
— =0.
dt
. . Hy . .
That is, ¢ rotates with constant speed w(I1) = B and all other variables are fixed. Assuming
1
that w(l) # 0, and for € > 0 sufficiently small, we can write
OH
dor o
d¢n w(Iy) —|—5%If11
O0H
an _ e,
den w(Il)—i-e%};Ill
OH
dIQ B Wnl

—= =
den w(Il)—i-e%—%
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From (85) we have that the corresponding averaged system reads as:

deo 1 ™ 9H,

=2 _ I 1

o, 627Tw([1) L (p1,¢2, 11, I2,0)dey

drn 1 2T 9H,
89 . o, I1, Ir,0)dey = 0
(89) der 21w(Iy) Jo a¢1(¢1 ¢2, 11, 12, 0)d

dl, 1 2T 9H,

dgr _827Tw(ll) o O (@1, 2,11, 13,0)doy

We can take another, more intuitive approach. Let us consider the averaged Hamiltonian

2

_ 1 _
H(¢27-[17-[27€) = % H(¢17¢27-[17]27€)d¢1 - HO(II) +5H1(¢27[17-[27€)'
0

The important observation here is that the averaged Hamiltonian does not depend on the ¢,

(the averaged fast variable). Notice that the corresponding equations of motion are

% =w(l)+ 6(?9[;’11
a6 _ oM,

(90) dt 0l
i,
dt¢
dls 0H,
i —5%.

Notice indeed in (89) that % = 0 because the right-hand side is the integral of a 27-periodic
function over the whole period.

Up to first order in € the systems (89) and (90) are equivalent. That is “for Hamiltonian systems
(88), the averaging method, with respect to the fast variable ¢; can be applied directly to the
Hamiltonian”. This procedure leads to the constant of motion H and I;. The previous, is true
for time of order O(1/¢) from the averaging theorem. Notice also that via applying averaging,
we have reduced the dimension of the problem. The original was 4-dimensional (2-DOF), but
the averaged (90) has only 1-DOF (¢2, I2) because H is independent of ¢; and I is a parameter.
The quantities H and I; are called adiabatic invariants. In general an adiabatic invariant is a
quantity that changes sufficiently little on sufficiently large time intervals. A generalization of
this “averaging in frequency” for systems of higher dimensions can be found in [3].

91

EXAMPLE VL9 (Weakly nonlinear forced oscillations). Consider the second order equation
aze dg

(91) @‘FwOe:Ef (H,dt,t> ,

where 6 € St and f is T-periodic in t. We let w denote the frequency of the driving force f.

For ¢ = 0, the system corresponds to an integrable Hamiltonian system with one degree of

d
freedom 6. Let z = (9, dt) The solutions of the unperturbed problem are given by

x(t) = exp(B(wo)t)z0(0),
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where

exp(B(wo)t) = [

cos(wot) — sin(wot)
—wp sin(wot)  —wp cos(wot) |
Consider the change of coordinates = = exp(B(w/k)t)u, where u = (u1,uz) ' .

This transformation is called the van der Pol transformation and allows us to put the original

system into one that is suitable for averaging. Indeed, in the new coordinates (91) reads as

dul_ kElw —k2w0 0 L Jw
o w [k: Tt f( 5)]81“(;&)
du  k |w —k2w0 0 w
dt__w[k z + f( “)]C"S(ﬁ)’

dz
where for convenience we did not substitute z and F but they can be written in terms of «

(92)

via the above transformation. Suppose that w? — k*wg = O(¢). Then (92) is indeed in the form
required to perform averaging. The transformed system (92) allows us to study, via averaging
for example, problems near resonances, that is when the driving frequency w is close to the
natural frequency wy.

dé

To gain more insight, let us choose f = ~cos(wt) — T af? corresponding to the Duffing
oscillator. Let wi — w? = eQ. Then, via the van der Pol transformation (setting k = 1) we get

d

% = £ Q1€ = u2S) — wi(urS + usC) + a(ur C — uzS)® — AC] S
(93) v

d

% = £ [ C = us8) — wi(urS + uzC) + a(u C — ugS)* — 7C] C,

w

where for brevity we use C' = cos(wt) and S = sin(wt).

Averaging (93) over one period T = T we get
w

du1 g 3 ) 2

hbeL N CQue — 2

Fraiaiw ( wouy U 4a(u1 + uz)u2> ,
% = i <w5uz + Quq + za(u% +ud)uy — fy> ,

or in polar coordinates (7, ¢):

d
& i(—w&r — 7y sin @),
dt 2w
(94) dgb € 3
= “ard —
"= 9w (Qr+ 1 OT —ycos ?).

If we fix the parameters (a,d,7) we can obtain (numerically) the equilibrium points of the

averaged system as shown in figure 2.
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0.0F
-0.5F

-1.0F
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-25F o

-30f, . . ¥

-
T

FIGURE 2. Numerically computed equilibrium points for the averaged system

(94). The solid lines correspond to stable equilibria, while the dashed line corre-

sponds to saddles. We have used the parameters: wyg = 1, eaw = 0.07, ey = 2.5,

ed = .2.
According to the averaging theorem, we would expect that solutions corresponding to fixed
points of the averaged system are translated into stable periodic orbits. Compare with the

phase-portraits in figure 3.

2 10

0 5
-2

S > 0
-4

-5
-6

-10

-4 -2 0 2 4 6 -5 0 5
u 0

FIGURE 3. Left: phase-portrait of the averaged system for w = 1.6. In this re-
gion the averaged system 3 hyperbolic equilibria, two of which are stable. Right:
the corresponding simulation for the Duffing oscillator. The shown periodic or-
bits are locally stable as predicted by the averaging theorem.

ExAMPLE VI.10. Consider the van der Pol equation

d%z o dz

— =—x+¢e(l—2°)—.

dt? e ) dt
This model describes the motion of a harmonic oscillator with small nonlinear friction. The
unperturbed equation is clearly d—tf = —x. Each orbit of this system is a circle given by

da\ 2
(d?) + 22 = h, which are concentric circles of radius vh. Thus, we define I as

dz\2 | 2
[:i(ﬂh):ﬁ:(dt)i.
27 2 2
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dx

On the other hand, ¢ is defined by ¢ = arg <a: +1 T

> , keeping in mind that we also can define

dx
equivalently the relations x = V21 cos ¢, T V21 sin ¢. In this way the equations of motion
in action angle variables read as

dl
Fri 2¢1(1 — I cos® ¢)sin” ¢
d
£ =—1+4+¢e(l- I cos? ®) sin ¢ cos ¢.
Averaging the [-equation we get
dJ J
2.
a =252

This equation has two equilibria: J = 0 and J = 2, which are hyperbolic. The equilibrium
J = 0 is repelling, while the equilibrium J = 2 is attracting. We therefore conclude that for

d 2
small, the original system has a stable limit cycle close to the circle < x) + 22 = 4, see Figure

dt
4.

ol

FIGURE 4. Phase portrait of the van der Pol equation for € = 0.1. Notice that

dz\?
trajectories converge to a limit cycle that is close to the circle <dt> + 22 =4.

VI.2.1. Averaging and local bifurcations. In this section we briefly mention an important
result relating the averaging theorem with bifurcations.

THEOREM VI1.3. Consider a p-parameter family of equations

d
(95) d%. 259(90;1575,/1)7 pER,
and its associated average
dx
96 — =eg .
(96) i =9

If at p = po (96) undergoes a saddle or a Hopf bifurcation, then for p ~ g and e sufficiently
small, the Poincaré map of (95) undergoes a saddle or a Hopf bifurcation.
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PROOF. See Theorem 4.3.1 in [10]. O

ExamMpPLE VI.11. For the Duffing oscillator in the previous example, one may consider w as
the bifurcation parameter. We notice that for the averaged system, the equilibria undergo a

saddle-node bifurcation as w is varied (Figure 2) and so do the periodic orbits for € small.

VI.2.2. Lie-Deprit series. We now explore another method applicable to Hamiltonian systems.
In this method, we start with a analytic Hamiltonian
ck
(97) H(q,p,e) =Y Hi(p,q).
k>0
The overall idea is to carry out a near identity transformation (q,p) — (q,p) + W(q,p,€), such
that up to some order the transformed Hamiltonian is integrable.

The function W is also assumed to be analytic and given by

Wigpe) =Y ° 'Wkp,

k>0

where the Wy’s are yet to be determined. The idea to obtain such function W is for it to satisfy the
system (observe that it has a Hamiltonian structure)

%_8W

dsiaip
. ap __ow

de  9q’

with ¢(0) = @ and p(0) = P. Of course, for ¢ = 0 we simply have the identity transformation.
Assuming that we know the W,,’s the problem now is to express H in terms of (@, P). We now
describe how this is done.

Consider for a moment a Hamiltonian H = H(q,p) and f = f(q,p) as smooth function. We define
the Lie derivative generated by H as the map

ﬁHfH{f,H}

We further make use of the notation £5;(f) = Ly (L1 (f)), where LY (f) = f.
Notice that for an analytic function f(p,q) we have

(Zgﬁqt) P)= 3;‘ L (,0) = 1 H) 0.0) = L (D(a:p).

d*f

In fact, T

= L% (f). Thus, Taylor’s formula can be rewritten as

k
= %E’ﬁz(f)(Q(O),p(O)) = exp (tLm) (£)(q(0), p(0)),

k>0
for ¢ small. If f is analytic, then the above series converges for ¢ sufficiently small.
If f explicitly depends on time, that is f = f(q,p,t), then

df

_ of
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For brevity, let us use the notation Ag(f) = {f,H} + g{, and similar to £§, let A% (f) =
Ag(AYL(f)). Thus

fg,p,t) = ZAIE(JC)(Q(O%P(O)) = exp(tAp)(f)(q(0), p(0)).
With the notation introduced so far we then have that the solutions of (98) can be give as
9(Q, P,) = exp(cAw)(Q)
P(Q, P,2) = exp(ehw)(P).
The advantage of the previous notation is that the inverse transformation is simply
Q(q,p,€) = exp(—eAw)(q)
P(q,p,€) = exp(—eAw)(p).

ProposITION VI.4. Consider an analytic functz'on

f(g:pe Z fkqp

k>0
Let (Q, P) be new variables defined by (98) such that
ok
W(gpe) =Y = 11 Vi(a,p)-
k>0

Then, if F = F(Q, P, ) denotes the transformation of f into the new coordinates, that is F(Q, P,e) =
f(q(Q, P),p(Q, P),¢), then
F= Z Fk (@, P),
k>0 !

where to determine the Fy’s one proceeds as follows: let f,g(Q,P) = f.(Q, P), and define functions
Q. P) recursively as

A@Q,P)= k+1+2( >{km }(QP)
Then F(Q, P) = féf(Qj_P)‘

For Hamiltonian systems with H given as in (97) we can follow the diagram
to obtain the transformed Hamiltonian K(Q, P, ). For example

Ko(Q, P) = Ho(Q, P)
(99) KI(Q?P) = HI(Q7P) + {H0>W0} (Q?P)
K2(Q7P) = H2(Q7P) + 2{I{h WO} (Q’P) + {HOa Wl} (Q,P) + {{H07W0}7W0} (Q?P)

where, in practice, we choose Wi such that K is as simple as possible. One proceeds similarly for the

higher order terms. Notice that this algorithm is suitable for symbolic computations.

ExAMPLE VI.12. We consider again a Hamiltonian of the form

k
£

H(¢1, ¢p2,11,12,€) = Ho(11) + E HHk(@a(bz,IhIz),
E>1
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Hy = f3 fo 13 13
0/1/2/
Hy = fi fi fi
/
Hy = f3——f3—
0/
Hy = f)—— -

FIGURE 5. A diagram to compute the higher order terms of the transformed Hamil-
tonian K = Ko+ K1+ ---.

0Hy

~ ol
K (1, J) the dependence on ¢; is eliminated. We use (J, 1) as the new action-angle variables.

where w (/) # 0. Our goal is to determine W such that in the transformed Hamiltonian

From (99) we see that since Hy does not depend on ¢; neither does Kj. For K; we have

Kl(wa‘]) = H1(¢7J) - 7171(1!)7‘])

Ideally we would like K7 to be independent of ;. We can achieve this, for example, if Wy is
periodic in ;. We can do that if we define

Y1 _
Wo (1, Y2, J1, J2) = / (Hi (61,2, J1, J2) — Hi (12, J1, J2)) dby,
0

wo(J1)

where H; denotes the average of H; over ;. Under such a choice of Wy we get
Ki(¢1,92, J1, J2) = Hi(ta, J1, J2).

So, up to the first order, the Lie-Deprit method coincides with the averaging method. However,
if one would continue with the computations, we can use similar arguments as before to find
that

K (1,2, J1, J2) = Ko(J1) + > " K (o, Ju, Jo) + €™ Ry, 2, J1, Jo).
k=1

The corresponding equations of motion have, in particular, the term ditl = O(¢"™h). This

shows that J; is an adiabatic invariant for time of order O(1/""1).

ExamMpLE VI.13. Consider the 1-DOF system defined by

1y 1oy €9y € 44
H = QP T QWodT T g Waq T s awnd
which models a weakly forced an-harmonic pendulum. The unperturbed Hamiltonian Hy =
145 1

2P + §w8q2 corresponds to a simple oscillator. We can define action angle variables (I, ¢)
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[21
q=4/—cos¢

wo
p = —+/2wol sin ¢.

In these new coordinates the Hamiltonian reads as

through the relations

H(p,I) = wol +e1%cos* p+e®al®cos® ¢.
~— ——
H1 H2
We now attempt to obtain a simplified Hamiltonian via the Lie-Deprit method. We already

know that Ko = Hy = Ho(I). For the first perturbation term we have
Ky = Hy + {Ho, Wo}
0Hy OWy
oJ oY
oW
= I?cos* ¢ —woa—wo
Naturally, one could think that the best is to choose K; = 0. The problem with such a

choice is that Wy would have secular terms, thus being unbounded as ¢t — oco. Instead, let

_ 1 (7 3
Ki=H = / Hidog = §12. In this way we have
™ Jo

1 —

Wo= /¢ Peosté— 21?) dg= L (8sin(2¢) + sin(4y))
= — cos” p — = = sin sin .
"7 wo o 8 32wp

With such a choice of Wy we now have that the new Hamiltonian reads as

K = Ko +eK; + 0(e%) = woJ + gEJQ + O(£%).

3
Thus, for the truncated Hamiltonian K = wqJ + gsJ 2 the equations of motion are

dJ

-0

dt

deb 3
E = wo + ZEJ

The corresponding solutions are simply

J(t) = J(0)

B(t) = (0) + <wO + i&](m) :

Let us further compute K. Recall that Ko = Hy + 2 {H, Wy} + {Ho, W1} + {{Ho, Wo}, Wo},

therefore, after some computations:

o J3(3(5awg — 11) cos(21)) 4 6(awg — 1) cos(41)) + (aw + 1) cos(61)) 4+ 10awg — 17) owWq
2= 320 08y

Now we can simply choose

(10awq — 17).J3

Ko —
2 32(4)0
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Indeed in that case one can check that Wy is bounded. Therefore, up to quadratic terms we
have the Hamiltonian
5 (10awg — 17)J3 L

32wy ’

K:woJ—i—gaJ?—i-a

with corresponding evolution given by

J(t) = J(0)

5 3(10awg — 17)J2> .

W(t) = $(0) + <w0 + %J +e o

VI.3. KAM Theory

In this section we describe some basic results related to the asymptotic behavior of small pertur-
bations of integrable systems. We shall restrict ourselves to 2-DOF.

Thus, let us consider H = H(q1, q2,p1,p2), (¢,p) € R? x R?. We assume that the Hamiltonian
system admits a periodic solution y(t) and our goal is to determine its stability. Recall that H = h
is a conserved quantity. This means that the flow of the Hamiltonian system “lives” in an invariant
3-dimensional manifold.

Without loss of generality, let us assume that ¢; is an angle variable. We now know that this can

be achieved by a canonical transformation. Moreover, we assume that?, locally in a neighborhood of

" d OH
2.
dt op

By the inverse function theorem, we know that H can be inverted with respect to p; so that

p1 = P(Ha CI17C]27172)-

Consequently, we notice now that the invariant manifolds where the trajectories evolve can be

parametrized by only (q1,p1,p2). Let us now take a Poincaré section at some value ¢ = ¢j. Since

d . . . .
can > 0, the flow is transverse to any section g =constant. Thus, without loss of generality, let the

section be at ¥ = {¢g1 =0=0 mod 27} and consider the Poincaré map

IT: (g2,p2,q1 = 0) — (g2, p2, 1 = 27).

This map is, effectively, 2-dimensional and depends on the constant H = h. What we are doing is

eliminating the time dependence because we can use ¢; to measure (a rescaled) time. Indeed, noticing

OH OH 0P OH  OH 0P
that H(q1,q2, P,p2) = h implies — = =

= —— and — = — —— we can now write the equations
0gs  OP0qy  Ops  OP Ops a

of motion as
OH

dg2 _ ops _ 0P

dg1 %;{ Op2
OH

dp2 _  og _ OP

dg1 g—ﬁ 0q2

This h-family of Hamiltonian systems is called the reduced Hamiltonian system. For this reduced
system P plays the role of a time-dependent (in reality g;-periodic) Hamiltonian. We thus know
that the Poincaré map II is area-preserving. In practical terms, this means that |det(JII)| = 1. Let

oH
3The case . < 0 is completely analogous.
D1
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x* = (g3, p5) denote " = vy N X. Since the map is 2-dimensional, we have the following possibilities

for the fixed point:

oIl
Hyperbolic : in this case a—(x*) has real eigenvalues A1 # +1 and Ay so that \; Ay = £1. Thus the
x
fixed point is hyperbolic.

o1l
Elliptic: in this case —(z*) has complex eigenvalues exp(+2mf) # +1. The fixed point is thus

called elliptic. This is the case we are going to consider further.

oIl
Parabolic:: in this case 8—(3:*) has eigenvalues +1. This situation usually arises in bifurcations.
x

ExaMpPLE VI.14. Consider the linear 2-DOF Hamiltonian system defined by

ﬁ+ﬁﬁ+ﬁ+%ﬁ

H —
(q1,P1, 92, p2) 9 92
This is the Hamiltonian of an uncoupled system

d%z

d2y

w T why =0,

with nonzero natural frequencies wy and wo.
For h > 0, each level set {H = h} is bounded, let us use action angle coordinates (I, ) leading

121
qo = 4/ —sinf
w2

P2 = /2wsl cos .

to the relation

dl do
These coordinates are chosen so that T = 0 and T = wy. In these new coordinates the
Hamiltonian reads as
2 2 2
+w
H(ql,pl,I,Q) = u—l—a@]:h.

2
Since wo # 0 it follows that
r— L (p_pitwia
w2 2 '

From here we find that the reduced Hamiltonian system reads as

dgn _ p1
do

(100) “2
dpr _ wi
40 w2Q1,

which is well-defined whenever p? + w%q% < 2h. Since the equations do not depend explicitly in
0, we can compute the Poincaré map easily. The solutions of (100), for a section at § = 0, are
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given by

q1(8) = q1(0) cos (““9) + 225, (0) sin <“’19>

w2

w w w '
p1(8) = ——q1(0) sin (1e> + p1(0) cos (%))
w2 w2
Then, the Poincaré map reads as
(27%01) w2 . (27TCU1>
cos —sin | ——
w2 w1 w2 [q1]

w1 . 21wy 2mw1 b1
—— S1n COS | —
w2 w2 w2

The map IT has a unique fixed point * = (g7, p]) = (0,0) of elliptic type. This means that z*

(g1, p1) =

is surrounded by invariant curves, which are intersections of the 2-torus with Z The Poincaré
map is periodic if “1 € Q, and is dense (fills the invariant circle densely) f — € R\Q. This
means that the fullwsystem has invariant 2-tori, with periodic orbits in the ﬁst case and dense
orbits in the second.

As we have seen in the previous example, the linearization of IT at the fixed point z* is a rotation
of angle 276 (up to a rescaling for ). In complex coordinates the Poincaré map reads as
(101) z+— zZ=-exp(2mb)z + g(z, 2),
where g is of the form

9(z,2) Z Guwz"2" + O(|2]"),
u+v=2

assuming that H is of class C".
If the term g was zero, the map z — exp(2mi6)z would be a rotation, implying that the periodic
orbit v is stable. It is therefore natural to check whether we can eliminate the term g by a change of

coordinates. Let us then consider a near identity transformation
c=C+adt, 2<jtk<n
Notice that g(z,%) = g(¢, <) + O(|¢JT*1). Therefore, the map (101) becomes:
8= ¢+ alE* = exp(2mB)C + aexp@mB)ICE + g(¢, 0) + O(CFHH),

In particular, the previous equation tells us that ¢ = exp(2m0)¢ 4+ O(|¢[?). Tt follows that 2z =
exp(—2m6)¢ and therefore

¢ = exp(2mif)¢ + a (exp(2mif) — exp(2m(j — k)8)) ¢ICF + D guuCUC + OGP,
utv=2
Thus, we see that we can eliminate the monomial gjij ¢ if we choose

_ Yik _ gjk exp(—2mb)
exp(2mi(j — k)0) — exp(2mif)  exp(2mi(j —k —1)8) — 1~

Naturally, such a transformation would introduce new terms, but those are of higher order. There-

fore, one can proceed at each degree (first eliminating terms of degree two, then those of degree three,
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etc.) as long as
exp(2mi(j — k —1)0) # 1.

This condition reminds us of those resonances in the chapter of normal forms. Indeed, the terms
gix?? 2 such that exp(2mi(j — k — 1)0) = 1 are called resonant, and cannot be eliminated via the
proposed change of coordinates. We now distinguish two types of resonances:

-‘rlzk — 9(k+1)kz|z|2k2-

(2) If0 = b € Q, then the terms for which j —k — 1 = ng, n € N, are also resonant. That is, the
q

(1) The terms g(k+1)kzk

terms g(nq+k+1)k|z|2kz"q+1 cannot be eliminated via the normal form procedure.

For the case where 6 is irrational, the Poincaré map (101) reads as

¢ =exp(2mf)C + > ¢i|¢1F ¢+ O(I¢[),

J=1

where m = [f - 1}. Such a map is known as the Birkhoff normal form. Furthermore, an elliptic
point is called non-degenerate if the first coefficient of the corresponding Birkhoff normal form, ¢y, is
nonzero.

Let us take another look at the term «. Notice that since the denominator is of the form
exp(2mind) — 1, for some integer n, such a term may become arbitrarily small even in the irrational
case (this is because for irrational € all numbers exp(2minf) are dense in the unit circle). This problem
is referred to as small denominators.

In the following, let us assume that the Hamiltonian is at least 4-times differentiable, and that
exp(2mind) # 1 for n = 1,2,3,4. In this case the Birkhoff normal form reads as

¢ = exp(2mib)¢ + e1[¢ ¢+ O(|¢),
Let action-angle coordinates (I, ¢) be defined { = I exp(1¢). Then
{ = Fexp(16) = exp(2mb)] exp(i) + 1 I exp(ae) + - -
= exp(2m16) exp (1) (1 + 1 1% exp(—2m0)) + - - - .
It follows that
(102) ()2 = 1% = I 4 2I*R(cy exp(—2m10)) + - - - .
Using such an expression for I we can also compute
(103) exp(1¢) = exp (2110 + 16) (1 + 11> (¢ exp(—2mif))) + - - -
From (102) and (103) we obtain®:
¢ = ¢+ 210 + S(c1 exp(—2mf))I> + - -,
(104) I =T+ R(crexp(—2mb))I° +--- .

Since the Poincaré map is area-preserving, it holds that R(c; exp(—2m6)) = 0. Thus we further
simplify (104) to

¢ =¢+QI)+ f(¢,1)
(105) R
=1

+9(o, 1),

4Expanding the square root of (102) in I and taking logarithm in (103)
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where® Q(I) = 2760 + e exp(—2mb)

1
would have higher differentiability, the higher-order terms would be smaller, and € would include

I?, and f and g are higher-order terms. Naturally, if the system

some extra terms from the normal form.

We now return to the issue of small denominators. Notice that if one is to expect that the successive
changes of coordinates converge, one would require that the small denominators are bounded away
from 0. In other words, one would expect that 8 is “badly approximated” by rationals. These numbers

are called Diophantine.

DEFINITION VI.6 (Diophantine numbers). A number w € R\Q is called Diophantine of type (C,7)
for some real numbers C' > 0, 7 > 1 (possibly depending on w) if the inequality

C

m >
o= 5 2

holds for all relatively prime numbers® (n,m), n # 0.
A particular class of Diophantine numbers are the algebraic numbers.

DEFINITION VI.7 (Algebraic number). An irrational number w is called algebraic of order n > 2
if there exists and n-degree polynomial with integer coefficients P(z) = a,z" + -+ + a1z + ag, with

an # 0 such that P(w) = 0.

For example, w = v/2 is an algebraic number, it is a solution of P(z) = 22 — 2. Liouville proved
that algebraic numbers are indeed Diophantine. On the other hand, there are Diophantine numbers

that are not algebraic. But in fact, it even holds that most real numbers are Diophantine [4].

LEMMA VL1 ([4]). Let 7 > 1. For almost every real w there exists a C = C(w, T) such that
C

Rk
w—— —
nl— |n|1+7'

Given a Diophantine number w of type (C, 7) we can compute a lower bound for the small denom-

inator. First, notice that for n # 0
| exp(2minw) — 1)? = 2 — 2 cos(2mnw) = 4sin?(mnw),

and let m be the integer closest to nw. Therefore, sin(mnw) = sin(rnw — 7m), and noticing that

2
mmmszmumggmmwa
T

| exp(2minw) — 1| = 2| sin(mnw — mm)| > 4|nw — m| > 4W.
n

Coming back to (105) we notice that if f and g are zero, namely for the system

o=0¢+()

(106)
i=1,

then the dynamics consist of simple rotations because I is constant, and ¢ increases with an amount
depending on I. If (106) was structurally stable, then we would be able to find a coordinate change
(¢,I) — (1, J) such that the dynamics of (105) reduce to simple rotations. This, in general, is not
possible. However, the following theorem due to Moser tells us that for certain initial conditions, such
a reduction is possible.

SThis expression for € follows from R(c1 exp(—2mi6)) = 0.
6Rela‘cively prime numbers are integers that do not have common factors other than 1.
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THEOREM VI.4 (Moser [25, 12]). Assume that the map (106) is C"-smooth, r > 4, in a strip
a <I<b. Assume that Q(I) satisfies (the so-called twist condition)

dQ
—_— >
> W >0,
for a < I < b. Then, for every § > 0 there exists an € > 0 (depending on § and r) such that
-1
if w e [Qa) + C,Q(b) — C] is Diophantine of type (C,T) for some T € <1,T>, C >0, and

[ fller + ||gller < eWC?, then the perturbed map (105) admits an invariant curve of the form
¢ =1 +u(y,w)
I =07 '(271w) +v(y,w),
with 0 < ¢ < 2w and where u,v are 2mw-periodic in ¢ and differentiable satisfying
luller + [Joller < 6.
The dynamics in such an invariant curve is given by the (circle) map
U 7,/} =Y + 2nw.
REMARK VI.1. In the above theorem, the norm is defined as

giti f
0ptoII

fller = sup max
a<I<b

An important consequence of Moser’s theorem is the following.

COROLLARY VL1. Let x* be an elliptic fized point of a ct area-preserving map I1 in the plane.
oIl _
Assume that 8—(96*) has eigenvalues X = exp(2mif) and X such that |A\| = 1 and A1 # 1 for q =
T

1,2,3,4. Assume further that the coefficient ¢y of the corresponding Birkhoff normal form is not zero.
Then x* is stable.

PRrROOF. Before starting it is worth noticing that the non-resonant condition is “only” excluding
2
eigenvalues A = +1, A = 2 and A = exp <:|:;z .

From the analysis we have performed above, we know that the dynamics of the map II near z*

are given by
o=+ + f(6.1)
I=1+g(p,1).
Consider a small strip e < I < 2¢7. Let J be defined by I =&J. Then
b=0+0()) + f(#,J)
J=J+3(s.7),

[

where f((;S, J) = f(¢,el) and g(¢p, J) = gg(qﬁ,sl). For this map the domain is 1 < J < 2. Furthermore,

d
dJQ(sJ)' = 2e%|c1|J > 2€%eq].

"Notice that in this strip f and g are indeed ¢* even though at I = 0 f may only be C? due to the singularity of the
polar change of coordinates at the origin



VL.3. KAM THEORY 105

Since ¢q # 0, then Moser’s theorem ensures the existence of invariant curves in the strip, implying
the stability of z*.
O

Let us see now a specific example.

ExaMpPLE VI.15. Consider the standard map given by
d=¢+1+esing

(107) .

I =1+¢csing,

with ¢ € [0, 27).

This discrete map arises as the Poincaré map of the “kicked rotator” [21].

Notice that the phase-space is, topologically, a cylinder. The Jacobian of the map is given by

14+ecosgp 1
ECOS @ 1]’

which has determinant 1 and hence the map is area-preserving. On the other hand, the eigen-
values of J are given by Ay = 1+ +/ecos¢p+ O(e). Thus, for e sufficiently small the eigenvalues

satisfy the non-resonant conditions of Corollary VI.1.

dQ I
Moreover, we readily see that the twist condition T 0 is satisfied (In this case Q(I) = 2—)
™

For e = 0, I is constant and ¢ increases each iteration by I. Therefore, we distinguish two cases:

I m
(1) if o = € Q, then an orbit starting at a point (¢, I) is periodic with period n,
T n

1

(2) if o is irrational, then an orbit starting at a point (¢, ) is not periodic and fills the

77
curve I =constant densely. These orbits are called quasi-periodic.

For € > 0 sufficiently small, Moser’s Theorem gives us sufficient conditions for the existence of

an invariant curve given by

(b = ¢ +U(1/%w),

(108)
I =27mw +v(¢,w),

for every Diophantine number w of type (C,7) provided that e < egC? (here &g is replacing e

in the theorem).

In some sense, Moser’s theorem is telling us that for ¢ sufficiently small, most of the

invariant curves for € = 0 survive.

In figure 6 we show some simulations of the standard map (107) for different values of € where it
is evident that many such invariant curves exist for ¢ small. The invariant curves (108) receive

the name of rotational invariant curves.
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e=0.1 e=0.5
2 — b 2
1 b 1
~ 0r > E ~ 0
-1 H ] 1L
_2,' """" ] 2L
0 1 2 3 4 5 é 0 1 2 3 4 5 6
e=20.8 e=12
2r 2
1 1
~ 0 ~ 0
1L 1F
2L _2f
0 1 2 3 4 5 6 (‘) 1 2 3 4 5 6
¢ ¢

FIGURE 6. Simulations of (107) for different values of €. Notice that near the
fixed point, there exist invariant curves predicted by Moser’s theorem which cor-
respond to those curves “that traverse horizontally the phase-space” The closed
orbits are due to resonances, while the “dust” indicates chaos.

From Moser’s theorem it follows that the dynamics on each rotational curve is given by ¥ +—

¥ + 27w. Therefore, the k-th iterate for an initial condition (¢, Iy) reads as
dr = Yo + 2mkw + u(vo + 2mkw, w)
I, = 27w + v(Yo + 2mkw, w).

To each orbit v, = {(¢dn, In) = II"(do, L)} |nez We associate the rotation number

n

> (Drr1— dn).

k=1

For the standard map (107), the rotation number reads as

n

Z(Ik + esin ¢g).

k=1

~ 1 1
Q=— lim —
2T n—oo n

~ I

Notice that for € = 0, indeed Q2 = 2—0.
T

We finish this example by addressing the following issue: what happens to the periodic orbits

that we know exist for ¢ = 07 The following theorem gives us the answer:

THEOREM VL5 (Poincaré-Birkhoff). Let II be an area-preserving twist map admitting two ro-

tational invariant curves y1 and s, with respective rotation numbers wi and wo. For every
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m m
rational number — € (w1,ws), there exist at least two periodic orbits with rotation number —,
n

n
and contained in the domain between 1 and ~a.

Roughly speaking, periodic orbits are seen as ”the centers of rings” (elliptic fixed points) which

are locally stable, and the intersection of separatrices of "ring regions” (hyperbolic fixed points).

An in-depth treatment of standard maps, in much greater generality, can be found in [21]. To
test the standard map you can program it yourselves or visit https://ibiblio.org/e-notes/
Chaos/stdmap.htm.

EXERCISE VI.2. What is the consequence of Moser’s theorem regarding Example VI.14? Cor-

roborate your arguments with appropriate simulations.

Let us now turn our attention to another type of KAM-result. In particular, we now consider

Hamiltonians of the form
(109) H(I7¢):H0(I)+€Hl(la¢7€)a

with n-degrees of freedom. Before going into the main result, let us see how the problem of small
denominators, and the related resonances, appear.
Let us suppose that we want to eliminate the angle dependence in H;. We saw in the section of

Lie-Deprit series that the first terms after the proposed change of coordinates is given by

0H oW

j=1 J /l/}]
2;(J)
Let us write H; and Wy in Fourier series, i.e.,
=S Hu) expliky)
kezn
= Wanl) explak).
keZn
Then, K7 further reads as
Z Hyp(J) exp(ekp) = Y Q;(J) > 1k;Woy exp(rkep).
kezn j=1 kezn

This means that, to achieve our goal, we want to solve an equation of the form
Hypexp(ihep) = > (] )1k Wor(J) exp (k)
j=1

for each k € Z". Thus, we can make the choice

Wor =


https://ibiblio.org/e-notes/Chaos/stdmap.htm
https://ibiblio.org/e-notes/Chaos/stdmap.htm

108 VI. REGULAR PERTURBATION THEORY

where kQ(J) = Z k;§2;(J). If such a term is equal to zero for some k, then we say that it is resonant,

and as usual, cannot be eliminated. However, just as we have seen before, the denominator £§2(.J) may
become arbitrarily small, unless, again, we impose a Diophantine condition on €;(.J). This problem
is addressed by the following theorem.

THEOREM VI.6 (Arnol’d). Assume that the Hamiltonian (109) is analytic and satifies
d%Hy
oI?

in a neighborhood of the torus I = Iy. Let w = Q(ly) € R" satisfy the Diophantine condition

‘det (I)‘ > W >0,

C

k|l > —
H =
for all k € Z™\0". Then, if € is sufficiently small, the Hamiltonian system admits a quasiperiodic
solution with frequency w. This solution lies on an analytic torus filled by the solution. The distance

from this torus to the unperturbed torus I = Iy goes to zero as € — 0.

The previous KAM-theorem is telling us that for a nearly-integrable Hamiltonian system, the
invariant tori of the unperturbed system corresponding of Diophantine frequencies, persist under

sufficiently small perturbations.

EXERCISE VL.3. Consider Hamiltonian H(I,$) = )+ eHi(I,p). The purpose is to find a

Ho(I
near identity canonical transformation® ® : (I, ¢) — (I, ) such that in the new coordinates the

Hamiltonian reads as H = Ho(I) 4+ ¢*H (I, §).

%Tts Jacobian is a symplectic matrix.

ExXAMPLE VI.16. This example is taken from [9].

Let us consider the planar system
Tnt1 = aZn f(Tn, Yn)
Yn+1 = C-rn(l - f(xmyn))

This equation, called May’s model, is used to model host-parasite dynamics, and thus x,, rep-
resents the host density and y,, the parasite density at generation n. The function f represents
the fraction of hosts x,, not parasitized (and accordingly 1 — f represents the fraction of hosts
parasitized). For the model, the parameter a represents the net rate at which the number of
hosts increase in the absence of parasites, while the parameter ¢ represents the average number

of adult female parasites emerging from each host parasitized. To be more specific, for this

- (o)

For this function, b models the “area reached by each parasite” and k is a parameter accounting

example let us take the function

for parasite clumping. The presence of these many parameters complicates the analysis. Thus,
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let us simplify the model by assuming b = k = 1, and ¢ = a. Thus the corresponding model is

aTy
€T =

(110) n+1 1+yn

_ aATnYn

T Ty

Notice that y,+1 = axy, — xn41. Therefore, we can eliminate y, and obtain an equation purely
in x,, namely:

axy

T 1= .
et 1+ax,—1 — 2,

The first relevant result to obtain is that the model, under appropriate coordinates, is area-

preserving.
LEMMA VI.2. The model (110) is area-preserving under logarithmic coordinates.

PROOF. The Jacobian associated to (110) is

a ax
1+y  (1+y)?
J(:Ea y) = ay axr
1+y (1+4y)?
2
Clearly det J(z,y) = %, and therefore det J(0,0) = 0. So, although J is not invertible at
Yy

the origin, it certainly is everywhere else.

Let us define new coordinates © = Inz and v = Iny. In these coordinates (110) transforms to

" Ina+u —In(1 4 exp(v))
(111) (’U) = <1na +utv— 1n<1 + exp(U))) )

and the corresponding Jacobian is

exp(v)

J(u,v) = 1 +£;§Z§})})
T T en()

We can now readily see that the Jacobian in logarithmic coordinates satisfies det J(u,v) =1. O

Next, let us look at the fixed points. It is readily seen that (111) has the fixed point (u*,v*) =
(0,In(a — 1)). For this fixed point to be defined we let a > 1. Notice that this fixed point
corresponds to the fixed point (z*,y*) = (1,a — 1) in the original coordinates. The original
system (110) has another fixed point at the origin, but it corresponds to a fixed point at infinity
for the logarithmic system, so we won’t look at it.

EXERCISE VI.4. Show, however, that the fized point (z,y) = (0,0) is a saddle provided
that a > 0.

Evaluating J(u*,v") we get
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Consequently, we know that (u*,v*) is an elliptic point with eigenvalues
a+1
2a
From the beginning of the proof of Corollary VI.1, we know that the eigenvalues A2 are not

A2 = exp(£2), cosf =

roots of unity for ¢ = 1,2,3,4. To apply the corollary, it only rests to find the first coefficient
of the Birkhoff normal form. Notice that this coefficient will depend on the coefficient a. Thus,
it is not surprising to expect that ¢; (in the Birkhoff normal form) is, generically, nonzero. The
actual computation of ¢; us quite tedious, but can be obtained from the formulas in [28]. In

Figure 7 we see a few orbits for a = 1.7.

6+

FIGURE 7. A simulation of (111). Notice the rings (quasiperiodic orbits) near
the fixed point located at the origin. These are the one predicted by Moser’s
theorem. Notice as well the periodic orbit of period 10 after the first two rings.

VI1.4. Further exercises for this chapter

(1) Consider an holomorphic map F' : C — C of the form F(z) = Az+ f(z) with f(0) = f/(0) =0
and assume that f is given by a series f(z) = Z szj . Consider a near identity transfor-
Jj>2
mation ¢(z) = z + Z ¢;2’. Show that, if the transformation ¢ where to linearize F, the
Jj=2
problem of small divisors appear.

d
(2) Study the equation dit; = —ex cost via the method of averaging. Compare the averaged and

exact solutions.

(3) Consider the system
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Find the averaged system, and compare numerically the solutions of the original system and
the averaged one.

Study the nonlinear systems

dx
dt

dx - 2y x?
— =c¢c(xsin”t — —
dt 2

with the averaging method. Compare the respective solutions (averaged and full).

= e(z — %) sin’t

and

Using the averaging method, study the “original” van der Pol equation

2
At i@

o T + x = ey cos(wt),

with 1 — w? = O(e).

Using the method of Lie-Deprit series analyze the parametrically driven an-harmonic pendu-
lum
1l 1y . 2, € 24
H= 5P + 2w0(1—|—asm(wt))q + Tl
In this model both € and « are small. However, assume that o < €. This assumption

allows you to relate the leading order terms of the Hamiltonian with that of example VI.13.

1
In other words, the higher order term now is iawg sin(wt)q?.

Hint: when computing K5 you will find that if you choose K9 = 0, then the problem of
small denominators will appear when computing Ws. You can keep this choice for w < 2wy,

but for w ~ wp the choice of Ky will depend on the resonant term sin(wt — 2wy).

Consider a 2-DOF Hamiltonian H (Iy, I2, ¢1, ¢2) = Ho(I1,I2) + eHy (11, I2, ¢1,¢2). Let Hy =
ar I + aply with a = (a1, a0) € R? and ¢ = (¢1, ¢o) € T2

e Describe the dynamics of the unperturbed system.

e Consider a resonant perturbation H; = —sin(27k - ¢) where k € Z\ {0} is chosen so that
k-a = 0. Find the trajectory passing through (¢1,9, I, I2) = (0,0, I1, I2) and explain
why the invariant tori of the unperturbed system do not persist for any arbitrarily small
E.

e What happens if you impose Diophantine conditions for the perturbation?






CHAPTER VII

(Geometric) Singular Perturbation Theory

In this chapter we consider the so-called slow-fast systems. These are “singularly perturbed”
ODE:s of the form

dz
85 :f(x,y,8)
(112)
dy _ (z,y,€)
dt _g ’y) Y

where z € R y € R™, 0 < e < 1, and f and g are assumed to be sufficiently smooth.

Although the distinction between regular and singular perturbations is rather subtle and some-
times imprecise, here the term singular refers to the fact that in the limit ¢ = 0, the system

(112) is not an ODE anymore.

Re-scaling time by t = e7 we obtain the equivalent system

dx
di :f<1',y,5)
.

(113)
dy =eg(z,y,¢)
dT - g 7y7 .

For ¢ > 0, the only difference between (112) and (113) is their time parametrization, that is their
orbits are the same, hence their equivalence. The time parameter ¢ is usually called the “slow time”
and therefore (112) is called the slow equation. Similarly 7 is the “fast time” and (113) the fast
equation.

The overall idea of Geometric Singular Perturbation Theory (GSPT) is to study the limit of (112)
and (113), and from there provide qualitative (or even quantitative) description for the perturbed
problem. The limit, as e — 0 of (112) is

0= f(z,y,0)
dy
E - g(xvyao)v

which is not an ODE anymore, but a constrained differential equation (CDE) [26], also called differential-
d
algebraic equations (DAE). We notice that for a CDE, the solutions of d—ZZ = g(z,y,0) are required to

satisfy the algebraic constraint f = 0. Generically, that is near points where D f[;;—g) is full rank,
the set

Co = {(z,y) € R"™ x R" | f(x,y,0) = 0}

is an n,-dimensional manifold. This manifold is called the critical manifold®. For points p € Cy for
which D, f(p) is full rank, the implicit function theorem tells us that Cp is locally given as the graph

IThe name critical manifold is misleading because, as we will see, the set Cy is not always a manifold. The name remains
like that due to historical reasons. If one would like to be more formal, one should simply call Cy the critical set.

113
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of a smooth function x = h(y). In this case, the dynamics on the critical manifold are given by

dy
(114) 3~ 9(y),y.0) = Gly),
which is called the “reduced slow equation”. The flow of (114), that is the flow on the critical manifold,
is called the slow flow. In principle, the reduced slow equation is easier to solve than the original (112).
Thus, a central question we want to answer is: how are the solutions of the reduced slow equation
(114) related to those of the slow-fast system (112)7

On the other hand, the limit of (113) as ¢ — 0 reads as

dx
di = f(xa Y, 0)
(115) T
dr 7
d
which is called the layer equation. We notice that the layer equation is effectively an ODE d—x =
-

f(z,y,0) with slow variable y having the role of a parameter. Notice that for the layer equation, the
critical manifold corresponds to equilibria. Moreover, regular points of Cy correspond to hyperbolic
equilibria, while singular points correspond to non-hyperbolic equilibria. This distinction will play a
fundamental role in the theory.

Regular perturbation theory tells us that orbits of (113) remain close to those of (115) for time 7
of order O(1), that is for time ¢ of order O(e). The goal of this chapter is to provide some perturbation
results that describe the dynamics of a slow-fast system for time ¢ of order O(1).

VII.1. Fenichel’s Theory

In this section we focus on the case where the unperturbed problem indeed gives a good enough
approximation of the dynamics of the perturbed problem for large time. To fix ideas, let us see first

an example.

ExampLE VII.1. Consider the planar slow-fast system

gdx 9
_ = — T
a Y

dy _
dt

(116)
-Y,

or in its fast-time parametrization
dz 9
dr
dy
dr
The corresponding critical manifold is

Co={(z.y) €R?|y* —z =0},

We notice that the critical manifold is everywhere regular because — (y*> — z) = —1 for all

ox

p € Co. In this case, the reduced slow equation is simply

dy _

dt =Y,
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and therefore the slow flow is

On the other hand, the layer equation reads as
dx

—_ = 2_
dr Y v
dy

—= =0.
dr

As mentioned before, every point of the critical manifold is an equilibrium point of the layer

equation. Moreover, since — (y?—x) = —1, each equilibrium point is stable. The limit behavior,

for € = 0, is sketched in figure 1

<

Y )

Co /

FIGURE 1. Critical manifold, layer dynamics and slow flow for (116).

Let us now compare the solutions of the unperturbed and perturbed problems. The layer

equation has the solution

&(1) = y(0)* + (2(0) — y(0)?) exp(~7),

where we introduce the Z notation only to make the distinction between the solutions clearer.

On the other hand, the fast equation has solution
% exp(—2
2(r) = y(0) exp(~2e7) <x(0)

1—-2¢
If we write such solutions in the slow time scale we get
2(t) = y(0)* + (2(0) — y(0)*) exp(~t/e)

2 oxp(— 2
o) = LR (o) - L ) expi-t/2)

~ y(0)?
1—2¢

) exp(—7).

1—2¢
*(t) (0)?
_ 19_ o+ <x(0) - 1y_ 25> exp(—t/e).

For t = O(e) we see that | — x| = O(e), as predicted by regular perturbation theory. For larger
time, the term exp(—t/e) is exponentially small. For example, for time ¢t = ke|loge|, we have
that exp(—t/e) = e and for larger times, such exponential goes to zero faster than any power
of e. Therefore, for large times z(t) ~ y2(t) + O(e), meaning that the flow is O(¢) close to the

critical manifold. See a numerical simulation in figure 2.

115




116 VII. (GEOMETRIC) SINGULAR PERTURBATION THEORY

1

-05 0 05 1

FIGURE 2. Simulation of (116) for e = 0.01

Fenichel’s theorem give conditions on general systems so that the behavior described in the previous
example holds. Before we state the theorem, we need the concept of normal hyperbolicity.

DEFINITION VIL1. A point p € Cp is called hyperbolic, if the ny x ny matrix D, f(z,y,0)|¢, has
all its eigenvalues with nonzero real part. The critical manifold Cy is called normally hyperbolic if all
points p € Cp are hyperbolic. A normally hyperbolic critical manifold is called attracting / repelling
/ or of saddle type, if the eigenvalues of D, f(x,y,0)|) have real part negative / positive / or both.

Points p € Cy that are not hyperbolic are called non-hyperbolic.

THEOREM VIIL.1 (Fechichel). Suppose that Sy is a compact normally hyperbolic subset of the
critical manifold Cy. Then for e > 0 sufficiently small the follQwing hold:

o There exists a locally invariant manifold Sz diffeomorphic to Sg.
o S, lies within distance (Hausdorff) O(g) for Sy.
e The flow on S converges to the slow flow (on Spy) as € — 0.

e S, is normally hyperbolic and has the same stability properties as Sp.

REMARK VII.1.

e The proof of Fenichel’s theorem follows a series of strong results and is contained in [8]. Notice
that this article is in fact called “Geometric Singular Perturbation Theory”. Nowadays, what
we call Geometric Singular Perturbation Theory includes many more results, since one can
also deal with non-hyperbolic critical manifolds, see [19].

e Usually, the manifold S; is not unique. However, away from the boundaries of &g, all the
manifolds satisfying Fenichel’s theorem lie within distance O(exp(—[/¢)) for some k > 0. Any
choice of such manifolds is called the slow manifold.

e A similar version of Fenichel’s theorem is Tikhonov’s theorem [27], which deals with the case
of attracting critical manifolds.

ExaMPLE VIL.2. In the previous example, notice that if one choose an initial condition z(0) =

0 2 t 2
13/(_ )26, then the dynamics evolve only on the slow time-scale and z(t) = Ei0M would be the

1—2¢
solution. Hence the slow manifold is given by

85:{(:U,y)e]R2|x: v }

1-—2¢

We now derive a general formula for the slow flow.
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PROPOSITION VIL1. Let p € Co be such that Dy f(x,y,0)|y) is full rank?. Then, there etists a
neighborhood V- C Cy of p such that the slow subsystem for e =0 on V is given by

dx

dt = —(Dzf (g 0))_1<Dyf(q7 0))g(q,0)
% = 9(¢,0),

forallqge V.

PROOF. Since det D f(,y,0)|) # 0, we can find a neighborhood of p, call it V' C Cp, such that
D f(x,y,0)|(qy is invertible for all ¢ € V. Implicit differentiation of f(x,y,0) with respect to ¢ yields:

dz dy dz
DI = D a7 DZE 1 D s Y =Y,
( f)dt+( yf)dt ( f)dt+( yf)g(z,y,0) =0
from which the result follows. O

REMARK VII.2. One should note that, in practice, computing the slow flow can be very difficult
as analytically solving the equation f(z,y,0) = 0 can be highly non-trivial.

ExAMPLE VIL3 (van der Pol). Consider the unforced van der Pol oscillator

dz 3
ST S
dy

"

The critical manifold is

2 a?
ng{(x,y)eR |y:3—aﬁ}.

2
Notice that D, f(x,y,0) = —2%4 1, meaning that (z,y) = ( £1, :F3> are non-hyperbolic points.

It then follows that the critical manifold has three components:
C[()l,_ = {($7y> € C()’l' < _1}7
CSZ{($,y)€C0| —].<£U<]_},

Cot = {(z,y) €Co |z >1}.

All of the above branches are normally hyperbolic, and the superscript a stands for “attracting”
and r for “repelling”.

Away from the non-hyperbolic points, the slow flow is given by

dr =z
dt  1—a2
dy
T
Notice that the first equation suffices, as is purely given with respect to x (one could of course
parametrize the slow flow in terms of ¥, just for this example parametrizing it in terms of x is

easier). We readily see that the slow flow is not well-defined at the non-hyperbolic points.

—X.

2Notice that this is weaker than hyperbolicity. The matrix [_01 (1]] is full rank but has eigenvalues +1.
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Qualitative pictures of the slow flow (in = and in y) are simple to obtain. From those we can

sketch the flow in Cy. All these are shown in figure 3.

= ~
N
S
\’\
Q@
/ ) /
N
\\

/-
/

Ficure 3. Singular limit for the unforced van der Pol equation.

A drawback of the slow-subsystem as given in Proposition VII.1 is that the equation
dx _
5 = ~(D2f(g,0)7"(Dy£(4,0))g(g, 0)
does not define a vector field on R" whenever D, f(g,0) loses rank (as in the Example). This can be
remedied by defining the desingularized vector field
dx _
(117) < = — 4et(D2f(g,0))(Daf(4,0) ™ (Dy f(, 0))g(q ).
Notice that now we have a well-defined vector field. However, to relate the flow of (117) with the

slow flow, one needs to pay particular attention to the sign of det(Df(q,0)).

VII.2. Singularities of the critical manifold

In the previous section we have seen that the relationship between the unperturbed and perturbed
solutions near normally hyperbolic points of the critical manifold is relatively easy. In this section we
briefly explore what happens in a neighborhood of a class of non-hyperbolic points. In particular, we
will only focus on fold points, which are one of the simplest kinds of non-hyperbolic points in slow-fast
systems. Moreover, from now on we restrict ourselves to planar slow-fas systems (except for a few

examples). A thorough account of this theory can be found in [19].

The analysis near non-hyperbolic points can be seen as the problem of “dynamic bifurcations”.

Consider again the van der Pol equation, but now in its fast formulation:

dx a3
e
dy

ar - e

We can see y as a “slowly varying parameter”. Notice that the scalar equation

iy E
ar -3 "¢

2
undergoes a saddle node bifurcation for the parameter y = ig. Since this bifurcation is also

2
know as fold bifurcation, the points (z,y) = <il, :F3> are called fold points.
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We recall that p € Cp is called singular if Dy f(w,y,0)(,) is not full rank.

ExAMPLE VII.4. The simplest example of a singular point presents in a planar slow-fast system

given by
dz 9
dr  ~—~—
=f(zy)
d
ﬁ =eg(z,y,¢),

where (z,y) € R x R. The critical manifold is the parabola
Co={(z,y) e R*|y = 2?}.
Notice that at the origin D, f(0) = —2x|z—0 = 0, hence a non-hyperbolic point. The example
2

equation has the non-degeneracy condition ﬁ’o # 0. See a sketch in figure 4
x

FIGURE 4. Schematic of a fold singularity. In this case we simply put ' < 0
close to the singularity.

Notice that the fast equation corresponds to the normal form of the saddle-node bifurcation with

y playing the role of a parameter. The type of points (see a formal definition below) satisfying

2
f(p*,0) =0, W(z’wy’o)(p) =0, and W(p) # 0 are called fold points.

EXERCISE VII.1. Corroborate that the two non-hyperbolic points of the van der Pol equa-
tion are indeed fold points.

For general slow-fast systems, fold points are defined as follows.
DEFINITION VIL.2 (Fold point). Let p € Cyp. The point p is called a fold point, if

Dxf(l‘, Y, O)|p

is of rank ny — 1. A fold point is called non-degenerate if for left and right eigenvectors u, v, of
D, f(x,y,0) one has

u- (Def(x,y,0)lp) # 0
(Do f(@,y,0)|p) - v # 0.

As mentioned above, the importance of fold points is that they are (one of the) simplest singularities
of critical manifolds. Therefore, when studying non-linear slow-fast systems, it will not be surprising
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if we encounter fold points. Therefore, in the following section we describe a very powerful geometric
technique that allow us to study the dynamics of slow-fast systems near such type of points (and many
other non-hyperbolic points). Fold points (in particular regarding the van der Pol equation) have been

studied using asymptotic methods as well, see [24, 23].

VII.3. The blow-up method

In this section we describe a technique that nowadays form a fundamental part of GSPT. For
pedagogical purposes, we shall describe it only in the context of planar systems and use it to study a
slow-fast system near a generic fold point. For further details and applications see [19, 16].

VII.3.1. Blow-up for a single time scale planar system. In this section we introduce the
blow-up method in its classical context, that is, to desingularize a nilpotent equilibrium point® of a
planar vector field. For a detailed exposition see [19, Chapter 7] and references therein. Here we
shall only treat an example to highlight the main idea of the method. Later, we will see how this
transformation also fits into the study of slow-fast systems.

Let us consider the planar ordinary differential equation (ODE)

& _ Y

(118) dt
% =2 +xy
dt '

We note that the origin (z,y) = (0,0) is a unique equilibrium point and that the linearization of (118)

o)

Thus, the origin is a non-hyperbolic equilibrium point and, moreover, is nilpotent. Our goal is to

at the origin is given by the matrix

qualitatively describe the orbits of (118) in a small neighborhood of the origin. However, not only
the linearization offers no useful information, but center manifold reduction is not suitable since in
this case the center manifold corresponds to the whole phase-space. So, what we are going to use is a
suitable change of coordinates, known as blow-up, which will induce a new system with only hyperbolic
equilibrium points, and therefore can be analyzed by dynamical systems tools.

Let us consider a weighted polar change of coordinates
(119) é:S' x I = R?, $(0,7) = (rcosf,r?sinb),

where I C R is an interval containing the origin and 6 € [0,27]. At the end of this section we clarify

the reason to choose a weighted polar change of coordinates, for now let us proceed with the example.
The change of coordinates defined by (x,y) = (rcos @, r*sin ) defines a new ODE, namely

j— r (1 + sinf — 4sin? § — sin® f + sin* 9)

B sin?6 +1

(120) )

= mcos@sing (Sin@—sin29+2) .
Note that the change of coordinates defined by ¢ maps the circle S! x {0} to the origin in the

4

plane®. Moreover, since ¢ is a diffeomorphism for {r > 0}, orbits of (118) in a small neighborhood

3We recall that an equilibrium point of a vector field is called nilpotent if the linearization of the vector field at such a
point is given by a matrix with only zero eigenvalues.
4Equivalently ¢571 maps the origin in the plane to the circle SR {0}.
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of the origin correspond to orbits of (120) in a small neighborhood of S* x {0}. Note however that
(120) vanishes along S' x {0}. To overcome this we can divide the right-hand side of (120) by 7. This
operation does not change the qualitative properties of the orbits in the region S' x {r > 0}. Thus, it
shall suffice to study the desingularized system

1
0= —5—— (1 +sinf — 4sin® —sin39—|—sin49)
7= ﬁcos@smﬁ (sin@—sinQQ—i—Z),

which does not vanish any more along S' x {0}. The most important fact is that orbits of (121) near
St x {0} correspond to orbits of (118) near the origin.

It is now straightforward to show that (121) has four hyperbolic saddle equilibrium points, namely
p1 = (—aresin(v/2 — 1),0), po = (arcsin(v/5/2 — 1/2),0), p3 = (7 — arcsin(v/5/2 — 1/2),0) and
py = (m+ arcsin(\/§ —1),0). Since the aforementioned equilibrium points are hyperbolic it follows
from linear analysis that the phase portrait of (121) in a small neighborhood of S* x {0} is as show in

Figure 5.
Yy
o}
/_\
b3 p2
x
D4 p1
Sl % {0} \_/
(bfl

FIGURE 5. Blow-up analysis of (118). On the left we show the phase-portrait of (121)
in a small neighborhood of S' x {0}, where four hyperbolic saddle points are found.
On the right we show the corresponding orbits of (118), where from a qualitative
perspective, the circle S' x {0} “blows-down” to the origin and all other orbits of (118)
are equivalent to orbits of (121). To provide more detail on the flow of (118) away
from the origin we have made use of the corresponding nullclines, shown as dashed-red
curves.

We finish this section with some important remarks:

e The procedure we exemplified above is known as the blow-up method. In some sense, the transfor-
mation ¢! “blows the origin up to a circle”. The advantage of blowing up is that one obtains a
new system which is simpler to analyze. We recall that, in the above example, (118) has a nilpotent
equilibrium point at the origin while (121) has four hyperbolic equilibrium points along S* x {0},
which are simpler to study with standard techniques of dynamical systems. Once the blown-up
system is understood we then “blow-down” the phase-portrait of (121) resulting in a qualitative
description of the original system (118).

e In the example presented above we have used a weighted version of a polar change of coordinates.
Usually one then refers to the transformation as a quasi-homogeneous blow-up to emphasize that

the weights in the transformation are distinct from 1. The advantage of using a quasi-homogeneous
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blow-up instead of a homogeneous one is that we can desingularize the origin in just one step. The
reader can check that if one uses (z,y) = (r cos 6, rsin ) instead of (119), the blown-up system then
has a pair of nilpotent singularities located at (6,7) = (0,0) and (6,7) = (7, 0). In turn, the blow-up
method can be applied once more to such pair of points, see [19, Chapter 7].

VI1.3.2. The blow-up method for slow-fast systems. In the previous section we sketched
the idea of the blow-up method to desingularize a nilpotent singularity of planar vector fields. In this
section we describe the blow-up method as is nowadays commonly used for the analysis of slow-fast

systems with non-hyperbolic singularities.

Let us first rewrite the e-family of vector fields (113) on R™'™ as a single vector field on R 1
of the form
o' = f(x,y,¢)
(122) y' =eg(@,y,¢€)
e =0.
Furthermore, let us assume that the origin (x,y,e) = (0,0,0) is an equilibrium point and that

D, f(0,0,0) has all its eigenvalues equal to zero. This means that the origin is a nilpotent singu-
larity of (122) and, as such, the blow-up method can be adapted to desingularize the origin of (122).

REMARK VIIL.3. It is worth noting that nilpotent singularities are a subset of non-hyperbolic
singularities. Thus, not all non-hyperbolic singularities of slow-fast systems may be studied with the
blow-up method. In particular, in all slow-fast systems with one-dimensional fast direction (z € R),
a non-hyperbolic singularity is nilpotent. In other cases where the singularity is non-hyperbolic but
not nilpotent, a preliminary transformation may bring a slow-fast system into a suitable form to be

analyzed via the blow-up method.

Although there are several (equivalent) versions and improvements of the blow-up method, we
restrict to the quasihomogeneous case as it is more commonly used nowadays. For further information
see [19, Chapter 7] and references therein.

Let X : R R™F1HL he the vector field, which in coordinates is defined by (122), and let
SV denote the N-th dimensional sphere®. Next, we can formally define the blow-up transformation

most commonly used in slow-fast systems:

DEFINITION VIL3 (Quasihomogeneous blow-up). Consider a vector field X : R™ 7+ _, grmtntl
defined by (122) and assume that X (0) = 0. Let a = (a1,...,am) € Ng*, 8= (B1,...,8m) € Nj and
v € Ny. Let the generalized polar transformation ¢ : S™*" x I — R™+"*! be defined by

where (Z,7,8) = (1, ., T, Y1y -+ > Jn, &) € S™" r € I, and I C R is an interval containing the
origin. Here we use the multi-index notation r*% = (r®zy,...,r*"Z,,), and similarly for r?7. The

quasihomogeneous blow-up of the vector field X, denoted as X, is defined by
(124) X = D¢_1‘(53,ﬂ,5,r) oXo @(;’Z‘, Y, &, T)‘

We note that ¢ maps the sphere By = S™™" x {0} to the origin in R™™ ! while ¢~! maps
0 € R™"*! to By. Hence, the operation ¢! is called (quasihomogeneous) blow-up while ¢ is called

(quasihomogeneous) blow-down. The word quasihomogeneous reflects the fact that the exponents

5To use spheres, cylinders, or related spaces as blown-up spaces is often very convenient, yet not necessary.
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appearing in (123) are not necessarily the same. We omit the term “quasihomogeneous” when all
exponents («, /3,7) are equal to 1.

It follows from (124) that X and X are conjugate for 7 > 0, meaning that there exists a one-to-one
mapping between trajectories of X and trajectories of X outside By. Moreover, it can be shown that
X is well defined at » = 0 [19]. Due to the presence of non-hyperbolic singularities, and depending
on the choice of the exponents, it is usually the case that the system denoted by X vanishes on Bj.
In fact, let j,(X) denote the ¢-jet of X at the origin. If j,(X) =0for £ =0,1,...,k and jr+1(X) # 0,

then we define the desingularized vector field X = —kX. Now X does not vanish at By. Since X
r

and X are smoothly equivalent for > 0, all the information obtained from X is equivalent to that
of X outside By. However, since X does not vanish any more along {r =0}, we may try to infer the
dynamics of X for 7 > 0 small from the restriction X |{r—0}- This greatly simplifies the analysis, since
usually we find that X has semi-hyperbolic singularities, hyperbolic singularities, or no singularities
at all. Finally, due to the equivalences between X, X, and X , we conclude that the flow of X forr >0
sufficiently small provides a complete description of the flow of X for € > 0 sufficiently small.

When we study high dimensional problems, say for m + n > 2, working with polar coordinates
can become cumbersome. Then, we rather work in charts that cover the blow-up space. In each of
the charts we can define local coordinates and a corresponding local vector field. In practice, what we
do to define local coordinates in a chart is to fix one of the blow-up coordinates to +1. This approach
is called “directional blow-up”. For example, to perform a blow-up in the &-direction we would define
new coordinates according to ¢ : R"T™+! — R ™+ given by

o(%,79,8,7) = (r°z,7Pg,r7),

that is by fixing € = 1. Similarly, we can define blow-ups in any of the other directions.

REMARK VII.4. The chart K := {¢ =1} is the most important one and it is called the rescaling
chart, the family chart or the central chart. The rest of the charts are often referred to as phase-

directional charts.

Directional blow-ups induce local vector fields on each of the (Euclidean) charts. Once the analysis
of the relevant local vector fields is performed, one can overlap suitable regions of the charts and match
the flow on such charts via the so-called matching maps (or transition maps) to describe the dynamics

all around §™*"

x I. In particular, this process allows us to track invariant objects, principally center
manifolds [6], across the blow-up space. A schematic representation of the blow-up map is provided

in Figure 6.

VII.3.3. Blow-up analysis of a folded singularity. In this section we consider the planar
slow-fast system

d
&t _ —y 4z + (’)(a,xy,yQ,a:Q)
dr
(125) <
—dz =e(—=1+O(z,y,¢)).

Notice that the critical manifold is, locally, a parabola
Co={(z,y) eR* : y =2°}.

Our objective is to provide a sketch of the proof of the following theorem.
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FiGURE 6. Sketch of the blown-up space and of some of the directional charts. In
practice, via the blow-up method, we study local vector fields defined in the charts, and
then “glue” trajectories and other invariant objects together to describe the dynamics
in a small neighborhood of By, which in turn provides the dynamics of a slow-fast
system around the origin for € > 0 sufficiently small.

THEOREM VIIL.2 ([18]). Consider (125) and define the sections
N = {(x,y) eR?|zel, y:pz},
5% = {(z,y) eR*|z = p, y € R},
where p > 0 is small and I is a small suitable interval so that X" intersects transversally the attracting

part of the critical manifold. Let T1 : " — X be the transition map for the flow of (125). Then,
there exists g > 0 such that the following assertions hold for e € (0,¢eq]:

(F1) The manifold S passes through X at a point (p, h(e)), where h(e) € O(*/3).
(F2) The transition 11 is a contraction with contraction rate O(exp(—C/¢)), where C > 0.

A description of the dynamics near a generic fold point can be seen in figure 7.
For the blow-up analysis, we define the blow-up as
(126) T =TT, y="7, ¢ =TC
According to the entry and exit sections defined above, we define the charts K; = {y = 1},
Ky = {t:: 1}, and K3 = {.f = 1}
The strategy to prove the theorem is as follows: first we consider the dynamics in the entry chart
K. In K, one studies the dynamics along S§ approaching the fold. Next we study the dynamics of
the chart K5, where we “zoom-in” into the fold. Finally we consider the dynamics in the chart K3

corresponding to the dynamics leaving a small neighborhood of the fold along the fast fibers.

VII.3.4. Analysis in the entry-chart K;. According to the blow-up (126), the local coordi-

nates in this chart (r1,z1,e1) are defined as

2 3
T =rix1, Yy =717, € =Tri€1.
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FIGURE 7. Schematic of a slow-fast system near a generic fold point. Up to lead-
ing order terms, the critical manifold Cy, shown in dashed, is given by Cy =
{(z,y) € R? |y = :1:2}. The (blue) lines with double arrows depict the dynamics of
the layer equation. Thus, Cyp has an attracting (S§) and a repelling branch (S5). Away
from the fold point, Fenichel’s theorem shows that, for ¢ > 0 sufficiently small, S§ and
Sy are smoothly perturbed to invariant manifolds (in this case trajectories) S and S
respectively. The analysis (via the blow-up method) shows that S can be extended
beyond the fold point as depicted in the figure. In particular, one can show that the
distance between the z-axis and the intersection S* N X is of order O(e2/3). This is
an example of a delayed loss of stability, or delayed bifurcation.

This change of coordinates induces the (desingularized) local vector field

1
2y = —1+ a2} + ~e121 + O(r1)

2
1
(127) ’I"ll = 57“161(—1 + O(Tl))
3
¢ = 3304 00m).

We notice that the sets {r; = 0}, {¢1 = 0} and their intersection {r; = &1 = 0} are invariant. In

the set {1 = {r1 = &1 = 0} the dynamics are given by
rh) = —1+a%

Therefore, there are two equilibrium points pf[ = (£1,0,0). Restricted to ¢1, both points are
hyperbolic, and p; is attracting while pi" repelling.
The dynamics on the invariant plane {¢ = 0} read as

2 = —1+23+0(r)
ri = 0.

In this case, the lines Mli = {(x1,7r1,e1) = (£1,7r1,0)} are sets of normally hyperbolic equilibria.
with M| being attracting and ]\41+ repelling.

The dynamics on the invariant plane {r; = 0} read as

1
)= -1+ + €171

3

/ 2

r = =€7.
1 21
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For this system, the equilibria are pf, but they are semi-hyperbolic. It is not difficult to check
that each equilibrium point possesses a center manifold Nfc tangent to the eigenvector (—1,0,4). In
the case of Ny, the flow along Ny is directed away from p; . Moreover N; is unique (this fact will
be important later). Similarly, the flow along N;" is directed away from pj” but it is not unique.

The 1-dimensional manifolds Nli extend to 2-dimensional center manifolds, denoted by Mli re-
spectively, sufficiently close to f;, with the same stability properties and flow induced by Nli, as
sketched in figure 8.

€1

1
a1

FIGURE 8. Sketch of the flow in chart Kj.

Let us define the sections
™ ={(z1,r1,61) € D1 : 11 = p}
¥ ={(z1,r1,1) € D1 : &1 =0},
where D is a small 3D-rectangle
Dlz{(:cl,rl,sl)e]Rg 21 ER,0<1r <p,0<¢g gé}.

We denote by IT; : X" — X* the map induced by the flow of (127). For a sufficiently small
region Dy, such a map is well defined. Moreover, by direct integration of the £;-equation in (127), the
transition time from a point p = (x1, p,e1) € X" to the point II; (p) € X7 is given by

1i=3 (2 5)a+om,

VII1.3.5. Analysis in the central-chart K>. The local coordinates in this chart are given by
T =71z + 2, yz?"%yz, 5:7«%,
which lead to the (desingularized) local vector field
b =15 —ya+ O(r2)
(128) yp = —1+0O(r)
5

x

0.

r
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For r9 = 0, one obtains the Riccati equation
= f% — Y2

= -1

T

(129)

N> N

Y

The solutions of a Riccati equation can be expressed in terms of Bessel and/or Airy functions.
What is most important for our purposes is the following;:

PROPOSITION VII.2. The Riccati equation (129) has the following properties:
(1) Every orbit has a horizontal asymptote y = y,, where y, depends on the orbit, such that

x — 00 asy — y, from above.

(2) There exists a unique orbit vy that can be parametrized as (x2,s(z2)), © € R. The orbit v,
is asymptotic to the left branch of the parabola {yz = x%} as xo — —oo and has horizontal
asymptote y = —Qy < 0 as r2 — 00.

(3) The function s(x) has the asymptotic expansion

—4
21.2 + O(.’B2 )7

s(x9) = 23 +
as xo — —oo, and
1 -3
s(xe) = —Qo + . + O(z5,°),
2

as To — 00

(4) The constant Qg is the smallest positive zero of

2 2
J71/3 <323/2> 4 J1/3 (323/2> ,

where Jo are Bessel functions of the first kind.

(5) All orbits to the right of va are backward asymptotic to the left branch of the parabola
{yg = ZL‘%} as ro — —oo, while all orbits of to the left of vo have a horizontal asymptote
Yo > Yp S Tg — —00.

The statements of the previous proposition are sketched in figure 9.

FIGURE 9. Flow in chart Ks.

Let us now define the sections
o= {(:EZay?)TQ) ER? 1y = 5_2/3}
o= {($273/2,7“2) ER® : 3y = 5_1/3}-

The reason of such a choice will be evident later when we glue together the dynamics on each of
the charts.
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Let Iy : 35" — X5 be the transition map induced by the flow of (128), and let ¢ = X" N~,. Form
the properties of the Riccati equation it follows that

H2(Q) = (571/37 _QO + 51/3 + 0(5)7 0)

Moreover, using regular perturbation arguments one can show that a small neighborhood of ¢ is
mapped (diffeomorphically) to a small neighborhood of TIz(q).

VII1.3.6. Analysis in the exit-chart K3. The local coordinates in this chart are given by:
T =73, y =Ty, € =rics.
The corresponding desingularized vector fields then reads as
vy =r3F(r3, y3,€3)
(130) ys = e3(—=1+ O(r3)) — 2y3F (73, y3, €3)
ey = —3e3F (r3, 3, €3),

where F(r3,ys,e3) =1 —y3 + O(r3).

It is straightforward to check that the origin is a hyperbolic equilibrium point with eigenvalues
(A1, A2, A3) = (1, —2,—3). Notice that there is a resonance given by Ao = A\; + A3, and recall that this
is a difficulty for the linearization. We will deal with this issue shortly.

As is previous charts, let us define the sections
3 =1{(r3,y3,63) ER>o x R xR : 73 €0, p], y3 € [~ 3, B3], € = 6}
3 =1{(r3,y3,€3) ER>0 xR x R>q : 73 =p, y3 € [-f3, B3], € €[0,6]},

where, for now, it may look arbitrary the repeated use of the parameters, but this will make sense in
the next section. Let II3 : ¥ — X* denote the map induces by the flow of (130). Our goal is to
obtain a formula for II3 accounting for the resonance. For this, let us first divide (130) by F' (which
close to the origin is simply a smooth equivalence), obtaining:

’I”é =73
’ €3
(131) Y =23 = -+ r3e3G (73, Y3, €3)
gh = —3es,

where G is a sufficiently smooth function. We notice that the first resonant monomial is r3e3 (because
of Ay = (1,0,1) - (A1, A2, A3)). Thus, we know that there is a near identity transformation y3 =
h(rs, ¥s,€3) = g3 + O(rsyses) transforming (131) to

T'/3 =73
U5 = =273 — g3 + O(r3es)
g = —3e3.

Now, we notice that rzez = r3(0)e3(0) exp(—2t), which coincides with the linear coefficient of gs.

Thus, integrating the g3 we have

73 = (3(0) — 3(0)) exp(—2t) + O(t3r3(0)e3(0) exp(—2t)),
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where by t3 we indicate the time in this chart. The transition time for the map Il3 can be computed

from r§ = r3, giving:
T=In (p> ,
ri

where 7; denotes the coordinate of r3 at ¥°". Recalling that £3(0) = ¢ we have

73(T) = (93(0) — 9) <?;>2 +0 <;7zln (Z)) .

We notice that in the previous equation we do not write the term § inside the big-Oh because it is a
fixed constant. Also, notice that O(r3 In(rg')) = O(r31In(rs)). If we denote by h the inverse of the
function h, we then have that the transition map II3 reads as

P

2
K _ 3 3
I3(r3,y3,6) = (h(r?”y&a) 5) (p) +O(r3Inrs)

e\ 3
(3)
p
VI1.3.7. Gluing the local results. We are now in position to prove Theorem VIIL.2. We do
this using changes of coordinates between the charts given by maps x;; : K; — K; given by:

) —~1/3 —2/3 1/3
(132) K12 ¢ T2 = T1&, y Y2 =6, , T =T1€{" g1 >0,
) —-1/2 1/2 —3/2
Ko1: T1=1T2Yy '~, T1=ToYy'", E1=Yy ', y2 >0,
. _ _ —1 -3
K231 T3 =T2%2, Y3 = Yoy , E3=1Ty", x2 > 0,
. -1/3 —2/3 1/3
K32 . X2 =¢€ /, Y2 = Y3&gy , T2 =T8535 , ez > 0.

We now have the following lemma.

LEMMA VII.1.

(1) The unique branch Ny is chart Ky (inr1 =0 and € > 0) is equal to y1 = k21(y2) (whenever
Ko1 1s defined).

(2) The orbit y3 = Kka3(y2) lies in the plane {r3 = 0}, converges to the origin in K3 as e3 — 0,
and is tangent at the origin (in K3) to the ys-azis.

PROOF.

(1) First, we notice since we are considering the left branch of ~9, we assume zo — —oo. It
follows form (132) that

1 ~1/2 1 —3/2
71:{(331,7”1:0,51) DX = X <x%+2x2+(9(x2_4)> ,slz(x%—l—xz—l—(’)(a:;l)) }

Next, we expand the above expression in terms of x5 as x9 — —oo obtaining

1 _ 1 _
1= {($1,0,€1) =1+ 4737%_‘_0(1'24)) €1 = —3+O($24)},
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FIGURE 10. Blown-up flow (inside the circle). Outside the circle we show the (blown-
up) layer dynamics for & = 0.

from where it follows that 71 — p] as e; — 07 (or 9 — —o0) and that 7; is tangent to
(1,0, —4). This fact, together with the uniqueness of N shows the statement.

(2) In a completely analogous way as in the previous item we obtain that

1= {(rs = 0.35,55) = 43 = g3 45+ 05 |

which shows the statement.

The previous lemma is schematized in figure 10
Next, let us define the map IT : 6" — X§* by

II =130 k93 0Il5 0 k12 0 I14.

At this moment it is convenient to notice that X" is the blow-up of 3" in chart K1, X5" = k12(X7Y),
5" = kog(X5Y), and X5 is the blow-up of X in chart K3.
From the analysis we did in the chart K1, it follows that II;(D; N M) C ¥ is a smooth curve
transverse to {r; = 0}. Thus, 12 (II;(D1 N My )) C X" is a smooth curve transverse to {ry = 0}.
From the analysis in K5 we then know that Il (512 (Hl(Dl N Mf))) has the form

{332 =518 yy = h$*(re), 7“2}

with ry € [0, pd/3], and hS* smooth. Such a curve, under the transformation oz reads as

{rs, h3"(r3), 0}
with (0, 5"(0),8) = Kra3(v2 N X5F). Then, the analysis performed in chart K3 shows that II(D; N M)
has the form
{rs = p, ys = h3*(e3), €3}

where h§* = O(¢%/3). This proves the first statement of theorem VIL.2. The second statement (which
we do not detail) follows from the local stability of the equilibria in charts K7 and K3 and the fact

that all other transformations are diffeomorphisms.
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EXERCISE VII.2. Show that hg“t = —9053/3 + O(e3lnes).

The proof is completed by blowing-down.






APPENDIX A

Background

A.1. Taylor series

Let a function f : R"” — R be k-times differentiable, £ > 1. By df(a) : R® — R we denote the
differential of f at a point @ € R", and it is given by

af(a)w) = L (ayor + -

of
(9%'1 t oz,

Oz, (@)vn,

where v = (vy,...,vp).

Let @ € N and & € R™ and consider the multi-index notation

n

|a| = Zaia
=1
n

al = Hai!,
=1

We define the notation

for |a| < k. Then the multivariable version of Taylor’s theorem lets us right

f@=3 PTG ary S h@e o,

| <k ' |o|=k+1

where li_r>n ha(x) = 0. Of course, for x € R the above formula is simply

r—a
B af ’f r—a
f(z) —f(a)+%(a)(x—a)+@(a) 5 T
and for € R? it reads as
B of of 0?f v o0 f 0?f w3
f(m) - f(a’) + axl (a/)Ul + 8162 (a’)UQ + 8$% (a’) 2' + +8x18$2 (a)Ul'Uz + +a$% (a’) 2' + )

where v = x — a.

133
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A.2. Dynamical Systems
In this section we recall some basic concepts of dynamical systems.

DEFINITION A.1 (Dynamical System). A dynamical system is a triplet (M, T, ®), where M is a
set (usually called the phase-space), T' C R is the time set, and ® : T'x M — M is the evolution

operator and satisfies:
®(0,x) =z, Ve e M,
and
O(s,D(t,z)) = P(s+t,x), Vee M, s,teT.

For T = 7Z, the dynamical system is called discrete, and for T'= R it is called continuous.

ExaMPLE A.1 (Examples of discrete and continuous dynamical systems).

e Map iterations give rise to discrete dynamical systems. For example, consider the map

1

2x, if 0<zx<—

P(z) = 1 2
2% — 1, it S<e<l,

with z € [0,1). If we take T = Z4 and M = [0,1) then the evolution operator
®:7Z, x M — M can be defined by ® : (t,z) — ¢'(z) := popo---op(x) providing
—_——

t-times
a dynamical system. You may recall from your dynamical systems course that ¢(z)

is called the doubling map, and it has several interesting properties. You can simulate
such a dynamical system and see what happens if the initial condition ®(0, x) is rational
or irrational.

e Ordinary differential equations, for example, give rise to continuous time dynamical

systems, see section A.3. In the case of the simple pendulum (Example A.5) we have

the ODE
T . x2
il —%sin:pl + f(t)

where z € S! and 2o € R. Therefore, the phase-space is M = S' xR and T’ = R. On the
other hand, the evolution operator is given by ® : (¢, (x1(0),22(0))) — (x1(t), x2(t)),

)

where (z1(t),z2(t)) corresponds to the particular solution of the ODE with initial
conditions (z1(0), z2(0)).

REMARK A.l. A usual assumption, that we shall adopt without further recalling, is that ®,(z) =

®(t,x) is, at the very least, a continuous function for every ¢ € T.
We now have a series of important terminology:

DEFINITION A.2. Given a dynamical system (M, T, ®):

e For fixed z € M, the function ®,(t) = ®(z,t), with t € T, is called the flow through x and
its graph is called trajectory through x.

e For fixed x € M, the set v, = {®(¢t,x) € M |t € T} is called, the orbit through «.

e A subset S C M is called ®-invariant if for all x € S and t € T, ®(¢t,x) € S. When the

context is clear, we simply say that a set is invariant.
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e A point x € M such that v, = x is called a fized point.

e A point z € M is called periodic if there is a £ > 0, £ € T such that ®(x,t) = z. Any
such t is called a period, but t is called minimal period if ®(t,x) # x for all t € (0,%). The
corresponding trajectory and orbit (through z) are also called periodic.

o Given x € M, we call:

a(r) = {m € M |3{tn},cy with le t, = —oo, and lim ®(t,,z) = m}

n—oo
w(z) = {m € M |3 {tn},cy with nh_)f{.lotn = 00, and nh—{go@(t"’x) _ m},

the a-limit set of x and the w-limit set of = respectively.
Notice that these sets are invariant. If x is a fixed point, then a(x) = w(xz) = z. Let v
be a periodic orbit, then a(z) = w(z) = v for every x € .

We now turn our attention to the important concept of stability.

DEFINITION A.3. Let x be a fixed point of a dynamical system (M, T, ®), with M being a normed
space! and let | - | denote the corresponding norm.

e The point x is called Lyapunov stable if given € > 0, there exists a d(g) > 0 such that for
every y € M with |y — x| < d(¢), it holds that |®(¢t,y) — ®(t,z)| < eforallt > 0,t € T. If
the previous inequality does not hold, then the point x is called unstable.

e The point x is called asymptotically stable if x is Lyapunov stable, and moreover, for all
y € M with |y — x| < d(e), tliglo Dy (y) = x.

EXAMPLE A.2.

e Consider the doubling map introduced above, namely

2z, if 0§x<1
d(x) = 2

1
2x — 1, if §§x<1,

with z € [0,1), and the dynamical system defined by iterations of ¢. Such a dynamical
system has the unique fixed point x = 0, which is unstable. Every rational point
x € (0,1), that is = 2, where p and ¢ are positive integers with p < ¢, is a periodic
point. The latter means that for every such point there is a periodic orbit passing
through it. On the other hand, every orbit passing through an irrational point « € (0, 1)
fills the entire interval as ¢ — 0o, and we say that the orbit is dense.

29 =0.15 z) =
r P]

T 4
/ //
e
0.8F 0.8} Va4
//\ 7 /
e
0.6} 0.6 7 /
- . i 7 /
=< = / _
0.4} 0.4 _
v/ y
e
0.2F o2t £ - /7
d / ‘V.
'
0 0 : : / : : 1
0 0 0.2 0.4 0.6 0.8 1
X X

Lotherwise one can adapt the definitions by using “neighborhoods”
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FIGURE 1. Examples of the doubling map. On the left, convergence towards a
periodic orbit {0.6,0.2,0.4,0.8}, and on the right a dense orbit where we show a
trajectory for n = 150 iterations.

e Consider the (unforced) pendulum

.| = g . )
o —7 S1n T

where z € S! and zo € R. This systems has fixed points: (z1,z2) = (0,0) and
(x1,x2) = (m,0). The fixed point (0,0) is Lyapunov stable, while the fixed point (7, 0)
is unstable.

FIGURE 2. Phase portrait of an unforced pendulum.
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A.3. Differential Equations

DEFINITION A.4 (Differential Equation (DE)). A differential equation is an equation involving one
or several independent variables and the derivatives of one or several functions with respect to those
variables. An Ordinary Differential Equation (ODE) is a differential equation depending on one
independent variable. A differential equation involving more than one independent variable is called
Partial Differential Equation (PDE).

ExXAMPLE A.3. Let a # 0 be some scalar constant. A scalar ordinary differential equation

(ODE) is, for example, the following:

dx(t)
dt

where t € R is the independent variable, in this case time, and z(t) is the dependent variable

(133)

— ax(t),

(because it depends on t). You may recall that the solution of (133) is
z(t) = 2(0)e™,

where x(0) is the initial condition, that is, the value of x(¢) at ¢t = 0. Depending on the value

of the constant a, the solution either approaches 0 or diverges, as shown in Figure 3.

z(t) z(t)

x(t) = x(0)e™
> 1 > 1

FIGURE 3. Plots of z(t) = 2(0)e® for a > 0 on the left and a < 0 on the right.

The above plots are classical examples of exponential growth / decay.

REMARK A.2. In the example above, the notation means “the derivative of the function

dz(t)
dt

dx
z(t) with respect to ¢”. Such a derivative is a function. Thus, another common notation is E(t)’ or

da(t
even d(t )(t) However, most of the times when there is no room for confusion, it is also enough to
. x
write —.

dt
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EXAMPLE A.4. Let u = u(z,t) be a scalar function that depends on two scalar independent
variables x, and t. The one dimensional wave equation

0%u 5 0%u

2 (x,t) =c ﬁ(x t)
is an example of a partial differential equation (PDE). One can check that a solution of the

wave equation is given by:
(134) u(z,t) = f(x —ct) + g(z + ct),

where the functions f and g are at least twice differentiable and are the so-called left and right
travelling waves, respectively. Indeed, to verify that (134) is, as claimed, the general solution it
suffices to let 21 = = — ct, z0 = x + ¢t and compute:

v 9%f 9% 0%u B f ,0%g

022 azﬁaZZ o= ot o

REMARK A.3. Notice the use of 9 in the previous example. This is done to clearly distinguish
between a ‘total’ derivative and a ‘partial’ derivative.
dz

— (1).
dt

x
no room for confusion, we shall omit the argument and thus write & = T In this way, we also use
2

L T d"x ..
the notation: # = —; and when more derivatives are involved: (™ = ——— for some positive n > 2.

ar?’

Ifx = (x1,...,2,) € R™is avector, then & = (&1, ...,4y,), and similarly for the higher derivatives.

Along these notes, we will use the customary notation &(t) = Moreover, as long as there is

DEFINITION A.5 (Order). The highest derivative appearing in a differential equation is called the

order of the differential equation.

According to the previous definition, the ODE of example A.3 is of first order, while the PDE of

example A .4 is of second order.

In general, an n-th order ODE is a function of the form:

(135) F (t:nx E ... 1:(")> —0
We say that an ODE is given in explicit form if (135) can be rewritten as
(136) 2 — ¢ <t,:r,:t,i,...,;v(”_1)),
otherwise we say it is given implicitly (or in implicit form). An explicit ODE can always be transformed
into a system of first order differential equations. Indeed, consider (136) and define u = (uq,ug, ..., uy,)
by:
_ — — (1)
Ul =T, Ug =Ty, Up =X .

Thus, we can write the n-dimensional first order system:

Uy U2

U u3

un f(t,U1,U2,...,Un)
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ExAMPLE A.5. Consider the equation of the forced simple pendulum: «9—1—% sinf = f(t). Letting

z = (x1,29)" = (0,0)T we can rewrite the second order ODE as the 2-dimensional system of

ODEs:
T B €2
il —%sinxl + f(t)

In general a system of ordinary differential equations is given by a set of equations of the

form:
Fi(t,xy,21,...,27 ', @2, &2, ..., Ty ,...,ajm,xm,...,x&)):()
. (n) . (n) . n
Fy(t,xy,&1,...,27 ', @2, %2, ..., Ty ,...,xm,xm,...,xgn))zo
. (n) . (n) . n
Fp(t,z1,&1,...,27 ', T2, &2,..., T e Ty oy - 2 = 0.

However, it is very common in models of natural phenomena that one is interested in an explicit

first-order system of the form

i‘l = fl(t, Tlyew- ,mn)
i.n - fn(tawla e 7:(:71)7
or in compact form
(137) & = f(t,x),
where © = (x1,...,2,)", [ : R x R" — R" is given component-wise by f = (f1,..., fn), and each

fi = fi(t,x) is, say, differentiable in all its arguments (but see Theorem A.2 below). Of course, some
more general expressions exist, but as we will see through these notes, most of the models we shall
consider are either of the form (136) or (137).

DEFINITION A.6 (Solution). Consider an ODE (135) or (136). An n-times differentiable function
on an open interval x : I — R, I C R, is a solution of the ODE (135) or (136) if

F(t,z(t), 2(t),...,2™(t)) =0,
M) = ft, (), &@),..., 2" V@),  tel,

respectively.

REMARK A.4. An intuitive way to think of a solution of an ODE is as a function that “satisfies”
the ODE. That is, a function that after substitution into the ODE (either (135) or (136)) makes the

equation hold.
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EXAMPLE A.6 (A simple oscillator). Consider the harmonic oscillator # = —6, or equivalently
by defining (1, 22) = (0, 6):

.fl = 9
(138) .

Tro — —X1.
A solution is given by 6(t) = asint + bcost, for some arbitrary constants a,b. Equivalently, for
(138), a solution is {z1(t) = asint + bcost, x2(t) = acost — bsint}. Indeed it is straightforward

to verify that any of such solutions satisfy the corresponding differential equation.

Let us provide some further observations regarding solutions:

o Let x(t) = (x1(t),...,z,(t))" denote a solution of an n-dimensional first-order system of
ODEs & = f(t,x), * € R". The initial condition is the value of the solution at some initial
time, usually denoted by ty. That is, the initial condition corresponds to x(ty) = @ for some
o € R™. A solution of an ODE satisfying x(ty) = x¢ is called particular solution.

e By the equivalence between n-th order ODEs and n-dimensional first-order systems, we see
that an initial condition for an n-th order ODE is given by specifying the initial values of all
the (n — 1) derivatives of the dependent variable.

e A solution of an n-th order ODE is called general, if it contains n arbitrary parameters. For
example, the solution of Example A.6 has the pair (a,b), making it a general solution.

e A solution of an ODE is called complete if all particular solutions can be obtained from the
general solution, by taking appropriate values of the parameters.

e A particular solution that is not obtained from a (parameter dependent) general solution is
called singular?.

e For a time independent ODE & = f(x), * € R", a point * such that f(x*) =0 is called an
equilibrium point. Equilibrium points are solutions of and ODE.

EXAMPLE A.7 (Example A.6 continued). The ODE 6(t) = 6(t) is of second order and the
solution 6(t) = asint + bcost has two arbitrary parameters a and b. Thus, the given solution is
a general solution. Let to = 0. Thus, the initial conditions are given by 8(0) = b and 6(0) = a.
Notice that, for (138), the aforementioned initial conditions correspond also to x1(0) = b and
x2(0) = a as expected. Thus one could also write the general solution as

0(t) = 6(0)sint + 6(0) cost.

A particular solution is obtained by choosing values of 6(0) and of 6(0).

EXAMPLE A.8 (The logistic model). The logistic model is broadly used to model population

dp P
— =kpP(1-—
i =+ (1-7)

dynamics. Such a model is given by

where P = P(t) denotes the population size at time ¢, M is the so-called “carrying capacity”

accounting for the maximum population that can be sustained, and k is a reproduction rate.

2A word of caution: as we will see in these notes, terms like ‘singular’, ‘regular’, ‘singularity’, among others mean different
things in different contexts. One must always be sure of the precise working terminology when necessary.
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The general solution is:

B M M — P(0)

1+ Ae Rt -~ P(0)

However this general solution is not complete, since the solution P(¢) = 0, which also satisfies

the given ODE, cannot be obtained by any choice of the initial condition P(0) > 0 (notice that

A is only defined for P(0) > 0). Of course, in this case, we can simply rewrite the solution as
P(O)M

P(0) + (A — P(0))ekt’

which is complete. Not all solutions become complete by simply rewriting it, as we see in the

P(t)

Pt) =

next example.

dz\>  d
ExAMPLE A.9. Consider the equation <£> — 4td—f + 42 = 0. The general solution, but not

complete, is x(t) = 2ct — 2, for some arbitrary constant ¢ € R. Notice that such solutions are
straight lines. Indeed, the solutions for different choices of ¢ look like in the following picture:

N\
N\ i

NNSS= 1
SSEKLSLY

However, the function z(t) = t?, corresponding to the envelope of the straight lines is also a
valid singular solution.

Notice from the solution z(t) = 2ct — 2, or also from the picture, that there are two solutions
(straight-lines) passing through each point (to, o) with zo < t3. On the other hand, there are
no solutions for initial (¢, z¢) such that o > t2 (above the parabola z = t?).

Most of the times, it is not possible to solve a differential equation, that is to find an analytical
solution. In some cases, the direction field can give us good enough graphical information to
understand the overall behavior of the solutions.

To exemplify how to obtain a direction field, let us consider a differential equation ’(t) = f(t,z)
with (¢,2) € U C R. We build a gird of point in U and at each point (¢,2) € U we draw a little line
segment with base at (¢,z) and slope f(¢,x). Moreover, we can even draw the head of an arrow at the
end of each of those line segments. In this way we build a field of arrows that encode, in their slopes,
information about the differential equation. In this field, a particular solution is a curve (¢, z(t)) that
is everywhere tangent to a compatible sequence of line segments and “flows” in the direction provided
by the tips of the arrows.



142 A. BACKGROUND

ExAaMPLE A.10. Consider the simple ODE & = —kx, k > 0. The general solution is z(t) =

. To draw the direction field (also known as vector field) we draw at each point of the

c-e
(t,z)-plane a little line segment with slope —kx and an arrow tip on the end of such a line
segment. In this way we form the “field of vectors” shown in the picture below. A particular
solution is a curve that is everywhere tangent to such a field, we show two examples in the
picture below.

Direction Field F = [1, —kx]

2 VI VI VA W VL W W VA W
NN N N N N N N NN
1 T N T N N
I~ N T T T T S XY
S s
1 P A 1
-1 = o oo
B N R R N R N N N
N A A A
0 1 2 3 4
t

In this plot every arrow has slope —kx. Notice that the arrows have been normalized in their

length to aid the visualization.

We now present a few formal definitions and fundamental results regarding existence and unique-
ness of solutions of ODEs & = f(t,x).

DEFINITION A.7.
e Let (t,z) € U C R xR". If U is open, and f : U — R" is continuous, then U is called

extended phase space, f is a time dependent vector field, and the differential equation

T = f(ta JJ)
is called nonautonomous.
o If U =R x U, with U C R" open, and f(t,x) = f(z), then the ODE is called autonomous.
e A differentiable function ¢ : I — R", I C R is called a solution to the ODE if graph(¢) :=
{(t,p(t)) |t € I} C U and

do B
dt t:T_f(T’¢(T))7 Tel.

e For (tp,x9) € U, a map ¢ : I — R" satisfies the initial condition (ty,zo) if top € I and
¢(to) = xo. Furthermore, ¢ solves the initial value proble (IVP) if

Pl =feow),  rel dt) =z

e The time dependent vector field f : U — R" satisfies:
— a global Lipschitz condition with constant L if

”f(t,xo) - f(t,l’l)” < LH‘TO - le? (taxi) elU,1=0,1,
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— and a a local Lipschitz condition if each point (7,z) € U has a neighborhood V' C U
such that f|y satisfies a Lipschitz condition in V', that is

Hf(t,xo) - f(t,xl)H < L”aﬁo - ‘T1H7 (t7xi) eV,i1=0,1,
for some constant L = L(7, z).

Existence of solutions of ODEs is provided by Peano’s theorem:

THEOREM A.1 (Peano). Let f : U — R"™ be continuous. Then, for every (to,xg) € U there exists a
sufficiently small At > 0 and a solution ¢ : [tg — At,tog + At] = R" of the ODE & = f(t,x) satisfying
the initial condition ¢(ty) = x¢.

REMARK A.5. Solutions need not be unique, as already exemplified above.

d 1
REMARK A.6. Peano’s theorem is sufficient: take the ODE d—f = —; with initial condition x(to) =
x
0. Indeed the function f(t,x) = is discontinuous at = 0, however the ODE has solution

22
z(t) = (3(t — to))'/? for any choice of tg € R.

Regarding uniqueness of solutions, we have the following;:

DEFINITION A.8. Consider an ODE & = f(¢,z). We say that a solution ¢(¢) to the initial value
problem ¢(ty) = xo, (to,x0) € U, is unique if any two solutions ¢ : I; — R™ and ¢o : s — R" (to the

same initial value problem) coincide on the interval I = I1 N Is.

REMARK A.7. Notice that, technically speaking, two solutions solving the IVP for different inter-
vals I; would be different because their domains are different. However, in principle we do not care
to distinguish those because we are in principle interested in solutions to the IVP that are defined for

the largest time interval possible. Hence the above definition.

THEOREM A.2 (Picard-Lindel6f). If the time dependent vector field f : U — R" satisfies a Lipschitz
condition in U, then for every (to,xo) € U there exists an € > 0 such that the IVP & = f(t,x),

z(to) = o has solution ¢ : [to — €,to + €] — R™.

PROOF. See Theorem 3.17 of [17]. O
The following lemma is useful in many situations.

LEMMA A.1. If a time dependent vector field f : U — R"™ is continuously differentiable, then a local
Lipschitz condition is satisfied on every compact and convex subset V. C U with Lipschitz constant
L:= sup [Dgf(t z)|

(t,z)eV

PROOF. See Lemma 3.14 in [17]. O

REMARK A.8. In fact, it is worth recalling that if f is a continuously differentiable vector field on

R"™, then f is (globally) Lipschitz if and only if sup ||Df(z)|| < oo.
Tz€R”

Next we have a result stating that “solutions of ODEs depend continuously on the initial condi-

tions”.
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THEOREM A.3. Under the same assumptions of Theorem A.2, each point (tg,xo) € U has a
neighborhood V- C U and an interval I, = [—e€, €] such that the family:

DI xV U
(57 (to, 1"0)) = ¢(t0 + S)
of solutions to the IVP & = f(t,x), x(ty) = to is a continuous mapping.

PROOF. See Theorem 3.20 of [17]. O

We now turn our attention to ODEs on manifolds. For the basics definitions and concepts regarding
(differentiable) manifolds, look at appendix A of [17].

DEFINITION A.9.

e Let f: M — TM be a time independent vector field on a manifold M. A curve ¢ €
CY(I, M) (the set of continuously differentiable mappings ¢ : t — ¢(t)) is called solution to
do(t
the differential equation & = f(x) if (Zi) = f(¢(t)) for all times ¢ € I.
e A vector field f : M — T'M on a manifold M is called complete if for all o € M the initial
value problem & = f(z), z(tgp) = z¢ has a unique solution ¢ : R — M. In other words, a

vector field is called complete if each of its unique particular solutions exist for all time.
The following result gives conditions under which vector field on R™ are complete:

THEOREM A .4.

e Lipschitz continuous (time independent / autonomous) vector fields f : R — R"™ are com-
plete.

e For time dependent vector fields: let I C R be an interval and let the time dependent vector
field f: I x R™ — R"™ satisfy the time-dependent Lipschitz condition

[f (8 21) = f(E,22)

where t € I and x1,x2 € R", and with L(t) > 0 continuous. Then the initial value problem

| < L(t)||lz1 — 22,

has a unique solution ¢ : I — R"™ for all initial values (to,xo) € I x R"

PROOF. See Theorem 3.23 in [17]. O

EXAMPLE A.11 (Several examples:).

e Consider & = x, € R. The vector field f(x) = x is globally Lipschitz in R. So, every
solution x(t) = xge’ exists for all ¢.

e Consider & = 22, z € R. The vector field f(z) = 2 is locally Lipschitz but not globally
Lipschitz. The solution to the ODE & = 22 is z(t) =

O \which we see that diverges
1-— l‘ot

as t approaches —.
Zo

e (Exercise 3.25 of [17]) Consider & = sinz, z(0) = g The particular solution is

z(t) = 2cot™! (e_t), which exists and indeed is bounded for all ¢t. Is the vector field
f(x) = sinzx globally Lipschitz? Is the vector field f(x) = sinx complete?
e (Lipschitz continuity is sufficient, but not necessary) Consider the vector field f(x) =

(x3 + 23) “2 | ¢ R? and the ODE & = f(z) on R%. This vector field is not globally

Lipschitz because its Jacobian is not bounded on the whole R?. However, it is not
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difficult to show (use polar coordinates) that all solutions to the ODE are concentric

circles. Thus, for any initial condition #(0) € R? a solution exists for all time ¢ € R.

We have the following important theorem.

THEOREM A.5. Lipschitz continuous vector fields on compact manifolds are complete.
PROOF. See Theorem 3.27 of [17]. O

A.3.1. Linear, autonomous ODEs. In this section we recall some basic results concerning the
differential equation

(139) T = Ax, x € R"
To motivate the study of linear systems, consider first the nonlinear ODE
z = f(x), x € R",

where f is at least twice differentiable. Suppose that * € R" is an isolated equilibrium point. We
can use Taylor series to obtain an approximate version of the ODE near the equilibrium point. Indeed
let y = — x*, thus @ = x* corresponds to y = 0. Then, by Taylor expanding near y = 0 we get:

§=Daf(@)y+ -,

where D, f(x") is a constant matrix, and the --- denote higher-order terms in y. One would expect
that the linear system y = Dy f(x*)y provides some information of the dynamics of the nonlinear
systems near the equilibrium point x*.

The solution of (139) is given by

x(t) = exp(tA)z(0),

where exp(tA) is an n X n matrix given by:

X Lk
EXERCISE A.1. Show that (t) = exp(tA)x(0) with exp(tA) = I+Z %Ak indeed solves (139).
k=1""

We shall denote by M (t) the fundamental matriz of (139). The fundamental matrix has, as
columns, n linearly independent solutions of (139). For example, if A has n linearly independent
eigenvectors v;, i = 1,...,n, then each column of M (t) is given by x;(t) = exp(A;t)v;. If there are less
than n eigenvectors, then one should generate the so-called generalized eigenvectors.

EXERCISE A.2. Let M(t) = [x1(t), ..., zn(t)] where z;(t) = exp(tA;)v; and (A, v;) is a linearly
independent eigenpair for i =1,...,n. Show that exp(tA) = M (t)M(0)~L.
(Note: this result also holds when some of the v.s are generalized eigenvectors).

Notice that the linear subspaces spanned by the eigenvectors are invariant under the flow of

(139). Indeed, if in particular we let v; be a (real) eigenvector of A, we have that exp(tA)cv; =

c (I + Z k!Ak> v =c¢ (1 + Z k,)xf) v; = cexp(tA;)v; € span {v;}.
k=1 k=1
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EXERCISE A.3. Prove that every (generalized) eigenspace of A is invariant under the flow of

(139).

This motivates the following definition.

DEFINITION A.10. Let vy,...,vp,, U1,...,Uy,, and wi,...,w,, be the (generalized) eigenvectors

associated to the ng, n,, n. eigenvalues with negative, positive, zero real parts respectively. Then
E*® = span{vy,..., v}
E" =span{ui,...,up, }

E¢ = Spa’n{w17 s awnc}a

are called the stable, unstable, and center subspaces respertively.

ExaMpPLE A.12.
d 0 1
* ]x Thus E¢ = span{(l,O)T}, E° =

1) Consider the li t — =
(1) Consider the linear system 5 0 1
span{(l, —l)T}, and E" = ().
RS YS SN S YN S
N NN NN N NN
TR NN N N N N Y|
NN Y N N Y Y N Y
g 0
N X X K K K N K N
B N SN
NONON N NN NN N
o LN NN N NN NN
—2 -1 0 1 2
Ty

FIGURE 4. Phase portrait for this example. Notice that the center eigenspace
E° (blue) coincides with the set of equilibria {x2 = 0} and that it is attracting.

(2) Consider the system
-1 -1 0
A T

dt -
0 0 1
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It follows that

E° =span< (0],

E" =span<{ |0

EC

I
=

d
EXERCISE A.4. Find and compare the general solution of d—j = Ax with A =

0 O] and
0

0 1
A= [O 0] . What do you notice?

DEFINITION A.11. A matrix A € R™*" is called hyperbolic, if all its eigenvalues have nonzero real
part. Moreover, the linear system (139) and the equilibrium point * = 0 are called hyperbolic if A is
hyperbolic.

DEFINITION A.12. The index of a matrix A, denoted by ind(A), is the sum of the algebraic
multiplicites of the eigenvalues of A with negative real part.

Notice that in the previous definition we have written “the equilibrium point”. The uniqueness of
the equilibrium point follows from the fact that hyperbolic matrices are invertible. We now present
two useful results.

ProOPOSITION A.1 ([15]). If (139) is hyperbolic, then there exists a unique decomposition (or
splitting) of R" as R" = E°* @ E", where E®° and E* are invariant under the flow of (139). Moreover,
the flow restricted to E° converges to the origin as t — oo, while the flow restricted to E* converges
to the origin as t — —oo. Notice that dim E° = ind(A).

PROPOSITION A.2. Let & = Ax and & = Bx be two hyperbolic linear systems. Then, there exists
a (time-direction preserving) homeomorphism h : R™ — R"™ mapping solutions of the first system to
those of the second if and only if A and B have the same index. We then say that the systems are

topologically equivalent.

A.3.2. Nonlinear systems. In this section we provide a couple of important results for the

smooth nonlinear system

(140) z = f(x), x € R",

and assume that f(z*) = 0. Let the linearization of (140) at @ = ™ be given by
(141) T = Az,

that is A = D, f(x").

THEOREM A.6 (Hartman-Grobman). If A is hyperbolic, then there exists a (time-direction pre-
serving) homeomorphism h : U — R", defined on a neighborhood U of x*, mapping solutions of the
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nonlinear system (140) to solutions of (141). In other words, if A is hyperbolic, then the nonlinear

system (140) is topologically equivalent to its linearization (141).
The next theorem generalizes Proposition A.1

THEOREM A.7 (Stable Manifold Theorem). Consider (140), and let * be a hyperbolic equilibrium
point. Let A = D, f(x*) have ns and n,, eigenvalues with negative and positive real part respectively.
Let U C R" be a neighborhood of *. There exist manifolds

Wé(x) = {ac eU : tliglo () = w*}
W (x) = {a} eU : t_l}r_noo () = x*}

that are smooth, invariant, and tangent to E°(x*) and E*(x™) (the stable and unstable eigenspaces at
x*) respectively. The dimension of W* is ng and of W* is n, and are called the stable and unstable

manifolds of x*.

ExAMPLE A.13. Let us consider the nonlinear system

dxl
hat S
(142) de
dra + 23
— =z :
dt 2
This system has a unique equilibrium point at the origin, and the linearized system is charac-
terized by the matrix
1 0
A= :
0 -1

Thus, it is clear that E° = span {(0, 1)T} and EY = span {(1, O)T}. Although for this example
we can find the solutions analytically, let us try to find only the stable and unstable manifolds.

For this, it is convenient to eliminate time by considering:

dxg T9
Qo o T
which has solution:
x2 c
143 S BT
( ) LUQ(ZUl) 3 + xla

where c¢ is the integration constant. We emphasize that (143) provides all solutions of (142).

The unstable manifold W* is tangent to the x1-axis. Thus, if locally W* is represented as a
oh

graph zo = h(x1) with h(0) = 87(0> = 0, we can use (143) to write:
1
72
Wu(O) = {(171,1'2) S R2 Xy = 3} .

For W* it suffices to notice that if x1(0) = 0, then x1(¢) = 0 for all ¢ > 0, and thus, from (142),
it follows that W*(0) = E°.
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RS TEITE]
it/ aX R
A\ r v
\ - ‘

F1GUuRrE 5. Phase portrait for this example. Notice that the unstable manifold
is tangent to the xi-axis, while the stable manifold coincides with the zs-axis.
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The next theorem generalizes Theorem A.7 to the case where the equilibrium point is nonhyper-

bolic.

THEOREM A.8 (Center Manifold Theorem). Consider (140) with f a smooth vector field, f(z*) =0

such that A = D, f(x*) has ns, ny,, and n. eigenvalues with positive, negative, and zero real parts

respectively. Let the corresponding (generalized) eigenspaces be denoted by E°, E* and E° respectively.

Then, besides the stable and unstable manifolds as in Theorem A.7, there exists an invariant manifold

W€(x*), called a center manifold, tangent to E¢ at x*. The center manifold is generally not unique.

ExAMPLE A.14. Consider the planar system

dxl

2
=12
dt
144
(144) Ay
P
It is clear that the origin (z1,x2) = (0,0) is the unique equilibrium point, and that the lin-
earization at the origin is given by the matrix
0 0
A=
0 -1

The corresponding eigenspaces are E° = span {(0, 1)T} and E° = span {(1, O)T}

According to Theorem A.8 the origin possesses a (unique) 1-dimensional stable manifold tangent
to the xo-axis at the origin, and a 1-dimensional center manifold tangent to the x;-axis at the
origin. In fact W* = E®. The system (144) can be integrated, thus every solution is known

analytically. Indeed, it is possible to show that every solution is given by

(145) wo(a1) = <$2(0) exp <xll(0)>> exp <;1) .
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Notice that for all £1(0) < 0 z2 — 0 as 1 — 0. Moreover,

dry (0) exp ( 1 (1)1
8:1]‘1 - 2 P 1'1(0) P T IE%’
0xo

and thus lim ——= = 0. In fact, due to the exponential term, the previous is true for any order
r1—0~ 0OT1

of the derivative. This implies that any center manifold can be chosen as the union of a curve

(145) for x1 < 0 and the positive z1-axis as shown in Figure

2

—_

T2
o

-2 -1 0 1 2

T

FIGURE 6. Phase portrait for this example. Notice that the center manifold is
not unique (here E° is the z-axis).
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